Kỳ thi tuyển sinh lớp 10 thpt đề thi môn : Toán thời gian làm bài 120 phút (không kể thời gian giao đề)

doc 41 trang Người đăng phongnguyet00 Lượt xem 3201Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Kỳ thi tuyển sinh lớp 10 thpt đề thi môn : Toán thời gian làm bài 120 phút (không kể thời gian giao đề)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Kỳ thi tuyển sinh lớp 10 thpt đề thi môn : Toán thời gian làm bài 120 phút (không kể thời gian giao đề)
KỲ THI TUYỂN SINH LỚP 10 THPT 
ĐỀ THI MÔN : TOÁN
Thời gian làm bài 120 phút (không kể thời gian giao đề)
ĐỀ SỐ 1
Câu 1 (2,0 điểm). Cho biểu thức :P=
Tìm điều kiện xác định của biểu thức P.
Rút gọn P
Câu 2 (2,0 điểm). Cho hệ phương trình :
Giải hệ phương trình với a=1
Tìm a để hệ phương trình có nghiệm duy nhất.
Câu 3 (2,0 điểm). Một hình chữ nhật có chiều rộng bằng một nửa chiều dài. Biết rằng nếu giảm mỗi chiều đi 2m thì diện tích hình chữ nhật đã cho giảm đi một nửa. Tính chiều dài hình chữ nhật đã cho.
Câu 4 (3,0 điểm). Cho đường tròn (O;R) (điểm O cố định, giá trị R không đổi) và điểm M nằm bên ngoài (O). Kẻ hai tiếp tuyến MB, MC (B,C là các tiếp điểm ) của (O) và tia Mx nằm giữa hai tia MO và MC. Qua B kẻ đường thẳng song song với Mx, đường thẳng này cắt (O) tại điểm thứ hai là A. Vẽ đường kính BB’ của (O). Qua O kẻ đường thẳng vuông góc với BB’,đường thẳng này cắt MC và B’C lần lượt tại K và E. Chứng minh rằng:
4 điểm M,B,O,C cùng nằm trên một đường tròn.
Đoạn thẳng ME = R.
Khi điểm M di động mà OM = 2R thì điểm K di động trên một đường tròn cố định, chỉ rõ tâm và bán kính của đường tròn đó.
Câu 5 (1,0 điểm). Cho a,b,c là các số dương thỏa mãn a+ b + c =4. Chứng minh rằng :
ĐÁP ÁN VÀ BIỂU ĐIỂM SỐ 1
Câu
Đáp án, gợi ý
Điểm
C1.1
(0,75 điểm)
Biểu thức P xác định 
0,5
0,25
C1.2 (1,25 điểm)
P=
0,25
0,5
0,5
C2.1 (1,0 điểm)
Với a = 1, hệ phương trình có dạng: 
 Vậy với a = 1, hệ phương trình có nghiệm duy nhất là: 
0,25
0,25
0,25
0,25
C2.2 (1,0 điểm)
-Nếu a = 0, hệ có dạng: => có nghiệm duy nhất
-Nếu a , hệ có nghiệm duy nhất khi và chỉ khi: 
 (luôn đúng, vì với mọi a)
Do đó, với a , hệ luôn có nghiệm duy nhất.
 Vậy hệ phương trình đã cho có nghiệm duy nhất với mọi a.
0,25
0,25
0,25
0,25
C3 (2,0 điểm)
 Gọi chiều dài của hình chữ nhật đã cho là x (m), với x > 4.
Vì chiều rộng bằng nửa chiều dài nên chiều rộng là: (m)
=> diện tích hình chữ nhật đã cho là: (m2)
Nếu giảm mỗi chiều đi 2 m thì chiều dài, chiều rộng của hình chữ nhật lần lượt là: (m)
Khi đó, diện tích hình chữ nhật giảm đi một nửa nên ta có phương trình: 
.=> (thoả mãn x>4); 
 (loại vì không thoả mãn x>4)
Vậy chiều dài của hình chữ nhật đã cho là (m).
0,25
0,25
0,25
0,25
0,25
0,5
0,25
C4.1 (1,0 điểm)
1) Chứng minh M, B, O, C cùng thuộc 1 đường tròn
Ta có: (vì MB là tiếp tuyến)
(vì MC là tiếp tuyến)
=> MBO + MCO =
= 900 + 900 = 1800
=> Tứ giác MBOC nội tiếp
(vì có tổng 2 góc đối =1800)
=>4 điểm M, B, O, C cùng thuộc 1 đường tròn
0,25
0,25
0,25
0,25
C4.2 (1,0 điểm)
2) Chứng minh ME = R:
Ta có MB//EO (vì cùng vuông góc với BB’) 
=> O1 = M1 (so le trong)
Mà M1 = M2 (tính chất 2 tiếp tuyến cắt nhau) => M2 = O1 (1)
C/m được MO//EB’ (vì cùng vuông góc với BC)
=> O1 = E1 (so le trong) (2)
Từ (1), (2) => M2 = E1 => MOCE nội tiếp
=> MEO = MCO = 900 
=> MEO = MBO = BOE = 900 => MBOE là hình chữ nhật
=> ME = OB = R (điều phải chứng minh)
0,25
0,25
0,25
0,25
C4.3 (1,0 điểm)
3) Chứng minh khi OM=2R thì K di động trên 1 đường tròn cố định:
Chứng minh được Tam giác MBC đều => BMC = 600
=> BOC = 1200 
=> KOC = 600 - O1 = 600 - M1 = 600 – 300 = 300
Trong tam giác KOC vuông tại C, ta có: 
Mà O cố định, R không đổi => K di động trên đường tròn tâm O, bán kính = (điều phải chứng minh)
0,25
0,25
0,25
0,25
C5 (1,0 điểm)
Do đó, 
0,25
0,25
0,25
0,25
 Câu 5 
Cach 2: Đặt x = => x, y , z > 0 và x4 + y4 + z4 = 4.
BĐT cần CM tương đương: x3 + y3 + z3 > 
hay (x3 + y3 + z3 ) > 4 = x4 + y4 + z4
ó x3(-x) + y3(-y)+ z3(-z) > 0 (*).
Ta xét 2 trường hợp:
	- Nếu trong 3 sô x, y, z tồn tại it nhât một sô , giả sử x thì x3 .
Khi đo: x3 + y3 + z3 > ( do y, z > 0).
	- Nếu cả 3 sô x, y, z đều nhỏ thì BĐT(*) luôn đung.
Vậy x3 + y3 + z3 > được CM.
KỲ THI TUYỂN SINH THPT
MÔN THI: TOÁN
(Thời gian làm bài 120 phút – Không kể thời gian giao đề cho thí sinh)
ĐỀ SỐ 2
---***---
Câu I (2,0 điểm)
1) Giải phương trình .
Giải hệ phương trình .
Câu II ( 1,0 điểm)
 Rút gọn biểu thức với .
Câu III (1,0 điểm)
Một tam giác vuông có chu vi là 30 cm, độ dài hai cạnh góc vuông hơn kém nhau 7cm. Tính độ dài các cạnh của tam giác vuông đó.
Câu IV (2,0 điểm) 
Trong mặt phẳng Oxy, cho đường thẳng (d): và parabol (P): .
Tìm m để đường thẳng (d) đi qua điểm A(-1; 3).
Tìm m để (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho . 
Câu V (3,0 điểm) Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (CA). Các tiếp tuyến tại B và C của (O) cắt nhau ở điểm D, AD cắt (O) tại E (E A) .
1) Chứng minh BE2 = AE.DE.
2) Qua C kẻ đường thẳng song song với BD cắt AB tại H, DO cắt BC tại F. Chứng minh tứ giác CHOF nội tiếp .
Gọi I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH.
Câu VI ( 1,0 điểm) 
Cho 2 số dương a, b thỏa mãn . Tìm giá trị lớn nhất của biểu thức
 .
ĐÁP ÁN VÀ BIỂU ĐIỂM
Câu
Nội dung
Điểm
Câu I (2,0đ)
1) 1,0 điểm
0,25
0,25
0,25
.Vậy phương trình đã cho có một nghiệm x = -2
0,25
2) 1,0 điểm
 Từ (1)=>
0,25
x=3
0,25
Thay x=3 vào (2)=> 2y=2
0,25
y=1 . Vậy hệ phương trình đã cho có nghiệm (x;y)=(3;1) 
0,25
Câu II (1,0đ)
0,25
0,25
0,25
=-1
0,25
Câu III (1,0đ)
Gọi độ dài cạnh góc vuông nhỏ là x (cm) (điều kiện 0< x < 15)
=> độ dài cạnh góc vuông còn lại là (x + 7 )(cm)
Vì chu vi của tam giác là 30cm nên độ dài cạnh huyền là: 
 30–(x + x +7)= 23–2x (cm)
0,25
Theo định lí Py –ta- go ta có phương trình 
0,25
 (1) Giải phương trình (1) được nghiệm x = 5; x = 48
0,25
Đối chiếu với điều kiện có x = 5 (TM đk); x = 48 (không TM đk)
Vậy độ dài một cạnh góc vuông là 5cm, độ dài cạnh góc vuông còn lại là 12 cm, độ dài cạnh huyền là 30 – (5 + 12) = 13cm
0,25
Câu IV (2,0đ)
1) 1,0 điểm
Vì (d) đi qua điểm A(-1; 3) nên thay x = -1 và y = 3 vào hàm số y = 2x – m + 1 ta có 2.(-1) – m +1 = 3 
0,25
-1 – m = 3 
0,25
 m = -4
0,25
Vậy m = -4 thì (d) đi qua điểm A(-1; 3)
0,25
2) 1,0 điểm
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình
0,25
; Để (d) cắt (P) tại hai điểm phân biệt nên (1) có hai nghiệm phân biệt 
0,25
Vì (x1; y1) và (x2; y2) là tọa độ giao điểm của (d) và (P) nên x1; x2 là nghiệm của phương trình (1) và ,
Theo hệ thức Vi-et ta có .Thay y1,y2 vào có 
0,25
m=-1(thỏa mãn m<3) hoặc m=7(không thỏa mãn m<3)
Vậy m = -1 thỏa mãn đề bài
0,25
Câu V (3,0đ)
1) 1,0 điểm
Vẽ đúng hình theo yêu cầu chung của đề bài
0,25
VìBD là tiếp tuyến của (O) nên BD OB => vuông tại B
0,25
Vì AB là đường kính của (O) nên AE BE
0,25
Áp dụng hệ thức lượng trong (;BE AD) ta có BE2 = AE.DE
0,25
2) 1,0 điểm
Có DB= DC (t/c hai tiếp tuyến cắt nhau), OB = OC (bán kính của (O)) 
 => OD là đường trung trực của đoạn BC => (1)
0,25
Có CH // BD (gt), mà AB BD (vì BD là tiếp tuyến của (O))
0,25
=> CH AB => (2)
0,25
Từ (1) và (2) ta có => tứ giác CHOF nội tiếp 
0,25
3)1,0 điểm
Có CH //BD=> (hai góc ở vị trí so le trong) mà
 cân tại D => nên CB là tia phân giác của 
0,25
do CA CB => CA là tia phân giác góc ngoài đỉnh C của (3)
0,25
Trong có HI // BD => (4)
0,25
Từ (3) và (4) => mà I là trung điểm của CH
0,25
Câu VI
(1,0đ)
Với ta có: 
0,25
Tương tự có . Từ (1) và (2) 
0,25
Vì mà .
0,25
Khi a = b = 1 thì . Vậy giá trị lớn nhất của biểu thức là 
0,25
KỲ THI TUYỂN SINH THPT
MÔN THI: TOÁN
(Thời gian làm bài 120 phút – không kể thời gian giao đề cho thí sinh)
ĐỀ SỐ 3
---***---
Bài I (2,5 điểm)
	1) Cho biểu thức . Tính giá trị của A khi x = 36
	2) Rút gọn biểu thức (với )
	3) Với các của biểu thức A và B nói trên, hãy tìm các giá trị của x nguyên để giá trị của biểu thức B(A – 1) là số nguyên
Bài II (2,0 điểm). 	Hai người cùng làm chung một công việc trong giờ thì xong. Nếu mỗi người làm một mình thì người thứ nhất hoàn thành công việc trong ít hơn người thứ hai là 2 giờ. Hỏi nếu làm một mình thì mỗi người phải làm trong bao nhiêu thời gian để xong công việc?
Bài III (1,5 điểm)
	1) Giải hệ phương trình: 
	2) Cho phương trình: x2 – (4m – 1)x + 3m2 – 2m = 0 (ẩn x). Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện : 
Bài IV (3,5 điểm)
	Cho đường tròn (O; R) có đường kính AB. Bán kính CO vuông góc với AB, M là một điểm bất kỳ trên cung nhỏ AC (M khác A, C); BM cắt AC tại H. Gọi K là hình chiếu của H trên AB.
	1) Chứng minh CBKH là tứ giác nội tiếp.
	2) Chứng minh 
	3) Trên đọan thẳng BM lấy điểm E sao cho BE = AM. Chứng minh tam giác ECM là tam giác vuông cân tại C
	4) Gọi d là tiếp tuyến của (O) tại điểm A; cho P là điểm nằm trên d sao cho hai điểm P, C nằm trong cùng một nửa mặt phẳng bờ AB và . Chứng minh đường thẳng PB đi qua trung điểm của đoạn thẳng HK
Bài V (0,5 điểm). Với x, y là các số dương thỏa mãn điều kiện , tìm giá trị nhỏ nhất của biểu thức: 
GỢI Ý – ĐÁP ÁN
Bài I: (2,5 điểm) 
1) Với x = 36, ta có : A = 
2) Với x , x ¹ 16 ta có :
B = = 
3) Ta có: .
Để nguyên, x nguyên thì là ước của 2, mà Ư(2) =
Ta có bảng giá trị tương ứng:
1
2
x
17
15
18
14
Kết hợp ĐK , để nguyên thì 
Bài II: (2,0 điểm)
Gọi thời gian người thứ nhất hoàn thành một mình xong công việc là x (giờ), ĐK 
Thì thời gian người thứ hai làm một mình xong công việc là x + 2 (giờ)
Mỗi giờ người thứ nhất làm được(cv), người thứ hai làm được(cv)
Vì cả hai người cùng làm xong công việc trong giờ nên mỗi giờ cả hai đội làm được=(cv)
Do đó ta có phương trình
Û 5x2 – 14x – 24 = 0
D’ = 49 + 120 = 169, 
=> (loại) và (TMĐK)
Vậy người thứ nhất làm xong công việc trong 4 giờ, 
người thứ hai làm xong công việc trong 4+2 = 6 giờ.
Bài III: (1,5 điểm) 1)Giải hệ: , (ĐK: ).
Hệ .(TMĐK)
Vậy hệ có nghiệm (x;y)=(2;1).
2)	+ Phương trình đã cho có D = (4m – 1)2 – 12m2 + 8m = 4m2 + 1 > 0, "m
	Vậy phương trình có 2 nghiệm phân biệt "m
 + Theo ĐL Vi –ét, ta có: . 
Khi đó: 
	Û (4m – 1)2 – 2(3m2 – 2m) = 7 Û 10m2 – 4m – 6 = 0 Û 5m2 – 2m – 3 = 0
	Ta thấy tổng các hệ số: a + b + c = 0 => m = 1 hay m = . 
	Trả lời: Vậy....
A 
B 
C 
M 
H 
K 
O 
E 
Bài IV: (3,5 điểm) 
Ta có ( do chắn nửa đường tròn đk AB)
(do K là hình chiếu của H trên AB)
=> nên tứ giác CBKH nội tiếp trong đường tròn đường kính HB.
Ta có (do cùng chắn của (O)) 
và (vì cùng chắn .của đtròn đk HB) 
Vậy 
Vì OC ^ AB nên C là điểm chính giữa của cung AB Þ AC = BC và 
 Xét 2 tam giác MAC và EBC có 
 MA= EB(gt), AC = CB(cmt) và = vì cùng chắn cung của (O)
 ÞMAC và EBC (cgc) Þ CM = CE Þ tam giác MCE cân tại C (1)
Ta lại có (vì chắn cung ) 
 Þ(tính chất tam giác MCE cân tại C)
Mà (Tính chất tổng ba góc trong tam giác)Þ (2)
Từ (1), (2) Þtam giác MCE là tam giác vuông cân tại C (đpcm).
A 
B 
C 
M 
H 
K 
O 
S 
P 
E 
N
4) Gọi S là giao điểm của BM và đường thẳng (d), N là giao điểm của BP với HK.
Xét DPAM và D OBM :
Theo giả thiết ta có (vì có R = OB). 
Mặt khác ta có (vì cùng chắn cung của (O))
Þ DPAM ∽ D OBM 
.(do OB = OM = R) (3)
Vì (do chắn nửa đtròn(O))
 Þ tam giác AMS vuông tại M. Þ 
 và (4)
Mà PM = PA(cmt) nên 
Từ (3) và (4) Þ PA = PS hay P là trung điểm của AS.
Vì HK//AS (cùng vuông góc AB) nên theo ĐL Ta-lét, ta có: 
hay 
Mà PA = PS(cmt) hay BP đi qua trung điểm N của HK. (đpcm)
Bài V: (0,5 điểm) Đối với bài toán này, thầy gợi ý một số cách giải sau để các em có thể lựa chọn.
Cách 1(không sử dụng BĐT Co Si)
 Ta có M = = 
Vì (x – 2y)2 ≥ 0, dấu “=” xảy ra Û x = 2y
 x ≥ 2y Þ , dấu “=” xảy ra Û x = 2y
Từ đó ta có M ≥ 0 + 4 -=, dấu “=” xảy ra Û x = 2y
Vậy GTNN của M là , đạt được khi x = 2y
Cách 2: Ta có M = 
Vì x, y > 0 , áp dụng bdt Co si cho 2 số dương ta có , 
dấu “=” xảy ra Û x = 2y
 Vì x ≥ 2y Þ, dấu “=” xảy ra Û x = 2y
Từ đó ta có M ≥ 1 +=, dấu “=” xảy ra Û x = 2y
Vậy GTNN của M là , đạt được khi x = 2y
Cách 3: Ta có M = 
Vì x, y > 0 , áp dụng bdt Co si cho 2 số dương ta có , 
dấu “=” xảy ra Û x = 2y
 Vì x ≥ 2y Þ, dấu “=” xảy ra Û x = 2y
Từ đó ta có M ≥ 4-=, dấu “=” xảy ra Û x = 2y
Vậy GTNN của M là , đạt được khi x = 2y
Cách 4: Ta có M = 
Vì x, y > 0 , áp dụng bdt Co si cho 2 số dương ta có , 
dấu “=” xảy ra Û x = 2y
 Vì x ≥ 2y Þ, dấu “=” xảy ra Û x = 2y
Từ đó ta có M ≥ += 1+=, dấu “=” xảy ra Û x = 2y
Vậy GTNN của M là , đạt được khi x = 2y
KỲ THI TUYỂN SINH THPT
MÔN THI: TOÁN
(Thời gian làm bài 120 phút – không kể thời gian giao đề cho thí sinh)
ĐỀ SỐ 4
---***---
Câu 1: (2.0 điểm ) Cho biểu thức :
, (Với a > 0 , a ¹1)
1. Chứng minh rằng : 
2. Tìm giá trị của a để P = a
Câu 2 (2,0 điểm ) : Trong mặt phẳng toạ độ Oxy, cho Parabol (P) : y = x2 và đường thẳng (d) : y = 2x + 3
1. Chứng minh rằng (d) và (P) có hai điểm chung phân biệt 
2. Gọi A và B là các điểm chung của (d) và (P) . Tính diện tích tam giác OAB ( O là gốc toạ độ)
Câu 3 (2.0 điểm) : Cho phương trình : x2 + 2mx + m2 – 2m + 4 = 0
1. Giải phơng trình khi m = 4
2. Tìm m để phương trình có hai nghiệm phân biệt
Câu 4 (3.0 điểm) : Cho đường tròn (O) có đờng kính AB cố định, M là một điểm thuộc (O) ( M khác A và B ) . Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C. CD là đờng kính của (I). Chứng minh rằng:
1. Ba điểm O, M, D thẳng hàng
2. Tam giác COD là tam giác cân
3. Đờng thẳng đi qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên đường tròn (O)
Câu 5 (1.0 điểm) : Cho a,b,c là các số dương không âm thoả mãn : 
Chứng minh rằng : 
ĐÁP ÁN- GỢI Ý GIẢI ĐỀ SỐ 4
CÂU
NỘI DUNG
1
1. Chứng minh rằng : 
 (ĐPCM)
2. Tìm giá trị của a để P = a. P = a 
=> .
Ta có 1 + 1 + (-2) = 0, nên phương trình có 2 nghiệm
a1 = -1 < 0 (không thoả mãn điều kiện) - Loại
a2 = (Thoả mãn điều kiện)
Vậy a = 2 thì P = a
2
1. Chứng minh rằng (d) và (P) có hai điểm chung phân biệt
Hoành độ giao điểm đường thẳng (d) và Parabol (P) là nghiệm của phương trình
x2 = 2x + 3 => x2 – 2x – 3 = 0 có a – b + c = 0
Nên phương trình có hai nghiệm phân biệt
x1 = -1 và x2 = 
Với x1 = -1 => y1 = (-1)2 = 1 => A (-1; 1)
Với x2 = 3 => y2 = 32 = 9 => B (3; 9)
Vậy (d) và (P) có hai điểm chung phân biệt A và B
2. Gọi A và B là các điểm chung của (d) và (P) . Tính diện tích tam giác OAB ( O là gốc toạ độ)
Ta biểu diễn các điểm A và B trên mặt phẳng toạ độ Oxy như hình vẽ
Theo công thức cộng diện tích ta có:
S(ABC) = S(ABCD) - S(BCO) - S(ADO)
 = 20 – 13,5 – 0,5 = 6 (đvdt)
3
1. Khi m = 4, ta có phương trình 
x2 + 8x + 12 = 0 có D’ = 16 – 12 = 4 > 0
Vậy phương trình có hai nghiệm phân biệt
x1 = - 4 + 2 = - 2 và x2 = - 4 - 2 = - 6
2. Tìm m để phương trình có hai nghiệm phân biệt
x2 + 2mx + m2 – 2m + 4 = 0
Có D’ = m2 – (m2 – 2m + 4) = 2m – 4
Để phương trình có hai nghiệm phân biệt thì D’ > 0
=> 2m – 4 > 0 => 2(m – 2) > 0 => m – 2 > 0 => m > 2
Vậy với m > 2 thì phương trình có hai nghiệm phân biệt
4
1. Ba điểm O, M, D thẳng hàng:
Ta có MC là tiếp tuyến của đường tròn (O) Þ MC ^ MO (1)
Xét đường tròn (I) : Ta có Þ MC ^ MD (2)
Từ (1) và (2) => MO // MD Þ MO và MD trùng nhau 
Þ O, M, D thẳng hàng www.VNMATH.com
2. Tam giác COD là tam giác cân
CA là tiếp tuyến của đường tròn (O) Þ CA ^AB(3)
Đờng tròn (I) tiếp xúc với AC tại C Þ CA ^ CD(4)
Từ (3) và (4) Þ CD // AB => (*)
 ( Hai góc so le trong) 
CA, CM là hai tiếp tuyến cắt nhau của (O) Þ (**)
Từ (*) và (**) Þ Þ Tam giác COD cân tại D
3. Đường thẳng đi qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên đờng tròn (O)
* Gọi chân đường vuông góc hạ từ D tới BC là H. Þ H Î (I) (Bài toán quỹ tích)
DH kéo dài cắt AB tại K.
Gọi N là giao điểm của CO và đường tròn (I)
=>
Ta có tứ giác NHOK nội tiếp
Vì có ( Cùng bù với góc DHN) Þ (5)
* Ta có : (Cùng chắn cung NH của đường tròn (I))
Þ DDHN DCOB (g.g)
 Mà 
 ÞDNHO DDHC (c.g.c)
Þ Mà (5) Þ, Þ NK ^ AB Þ NK // AC Þ K là trung điểm của OA cố định Þ (ĐPCM)
5
Câu 5 (1.0 điểm) : Cho a,b,c là các số dơng không âm thoả mãn : 
Chứng minh rằng : 
* C/M bổ đề: và . 
Thật vậy
(Đúng) Þ ĐPCM
Áp dụng 2 lần , ta có: 
* Ta có : , tương tự Ta có:  Þ
Ta chứng minh 
Áp dụng Bổ đề trên ta có:
 Þ 
* Mà:
Từ (3) và (4) Þ (2)
Kết hợp (2) và (1) ta có điều phải chứng minh.
Dấu = xảy ra khi a = b = c = 1
KỲ THI TUYỂN SINH THPT
MÔN THI: TOÁN
(Thời gian làm bài 120 phút – không kể thời gian giao đề cho thí sinh)
ĐỀ SỐ 5
---***---
C©u 1: 2,5 ®iÓm: Cho biÓu thøc A = 
T×m ®iÒu kiÖn x¸c ®Þnh vµ tó gän A.
 b) T×m tÊt c¶ c¸c gi¸ trÞ cña x ®Ó 
 c) T×m tÊt c¶ c¸c gi¸ trÞ cña x ®Ó ®¹t gi¸ trÞ nguyªn.
C©u 2: 1,5 ®iÓm:
Qu¶ng ®­êng AB dµi 156 km. Mét ng­êi ®i xe m¸y tö A, mét ng­êi ®i xe ®¹p tõ B. Hai xe xuÊt ph¸t cïng mét lóc vµ sau 3 giê gÆp nhau. BiÕt r»ng vËn tèc cña ng­êi ®I xe m¸y nhanh h¬n vËn tèc cña ng­êi ®I xe ®¹p lµ 28 km/h. TÝnh vËn tèc cña mçi xe?
C©u 3: 2 ®iÓm:
Cho ph­¬ng tr×nh: x2 – 2(m-1)x + m2 – 6 =0 ( m lµ tham sè).
Gi¶I ph­¬ng tr×nh khi m = 3
T×m m ®Ó ph­¬ng tr×nh cã hai nghiÖm x1, x2 tháa m·n 
C©u 4: 4 ®iÓm
Cho ®iÓm M n»m ngoµi ®­êng trßn t©m O. VÏ tiÕp tuyÕn MA, MB víi ®­êng trßn (A, B lµ c¸c tiÕp ®iÓm). VÏ c¸t tuyÕn MCD kh«ng ®I qua t©m O ( C n»m gi÷a M vµ D), OM c¾t AB vµ (O) lÇn l­ît t¹i H vµ I. Chøng minh.
Tø gi¸c MAOB néi tiÕp.
MC.MD = MA2
OH.OM + MC.MD = MO2
CI lµ tia ph©n gi¸c gãc MCH.
GỢI Ý – ĐÁP ÁN ĐỀ SỐ 5
Câu 1: (2,5 điểm)
a, Với x > 0 và x 4, ta có:
A = = = ... = 
b, A = > ... x > 4.
c, B = . = là một số nguyên ... là ước của 14 hay = 1, = 7, = 14.
(Giải các pt trên và tìm x)
Câu 2: (1,5 điểm)
Gọi vân tốc của xe đạp là x (km/h), điều kiện x > 0
Thì vận tốc của xe máy là x + 28 (km/h)
Trong 3 giờ: 
+ Xe đạp đi được quãng đường 3x (km), 
+ Xe máy đi được quãng đường 3(x + 28) (km), theo bài ra ta có phương trình:
3x + 3(x + 28) = 156
Giải tìm x = 12 (TMĐK)
Trả lời: Vận tốc của xe đạp là 12 km/h và vận tốc của xe máy là 12 + 28 = 40 (km/h) 
Câu 3: (2,0 điểm)
a, Thay x = 3 vào phương trình x2 - 2(m - 1)x + m2 - 6 = 0 và giải phương trình: 
x2 - 4x + 3 = 0 bằng nhiều cách và tìm được nghiệm x1 = 1, x2 = 3.
b, Theo hệ thức Viét, gọi x1, x2 là hai nghiệm của phương trình
 x2 - 2(m - 1)x + m2 - 6 = 0 , ta có:
và x12 + x22 = (x1 + x2)2 - 2x1.x2 = 16
Thay vào giải và tìm được m = 0, m = -4
CÂU 4
 A
 D
 C
O
H
 M
 I H
 B
a, Vì MA, MB là các tiếp tuyến của đường tròn (O) tại A và B nên các góc của tứ giác MAOB vuông tại A và B, nên nội tiếp được đường tròn.
b, MAC và MDA có chung và = (cùng chắn ), nên đồng dạng. Từ đó suy ra (đfcm)
c, MAO và AHO đồng dạng vì có chung góc O và (cùng chắn hai cung bằng nhau của đường tròn nội tiếp tứ giác MAOB). Suy ra OH.OM = OA2
Áp dụng định lý Pitago vào tam giác vuông MAO và các hệ thức OH.OM = OA2 MC.MD = MA2 để suy ra điều phải chứng minh.
d, Từ MH.OM = MA2, MC.MD = MA2 suy ra MH.OM = MC.MD (*)
Trong MHC và MDO có (*) và chung nên đồng dạng.
 hay (1)
Ta lại có (cùng chắn hai cung bằng nhau) AI là phân giác của .
Theo t/c đường phân giác của tam giác, ta có: (2)
MHA và MAO có chung và do đó đồng dạng (g.g)
 (3) Từ (1), (2), (3) suy ra suy ra CI là tia phân giác của góc MCH
KỲ THI TUYỂN SINH THPT
MÔN THI: TOÁN
(Thời gian làm bài 120 phút – không kể thời gian giao đề cho thí sinh)
ĐỀ SỐ 6
---***---
Câu I: (2,5 điểm)
1. Thực hiện phép tính: 
2. Cho biểu thức: P = 
a) Tìm điều kiện của a để P xác định	b) Rút gọn biểu thức P.
Câu II: (1,5 điểm) 
1. Cho hai hàm số bậc nhất y = -x + 2 và y = (m+3)x + 4. Tìm các giá trị của m để đồ thị của hàm số đã cho là:
	a) Hai đường thẳng cắt nhau
	b) Hai đường thẳng song song.
2. Tìm các giá trị của a để đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2).
Câu III: (1,5 điểm) 
1. Giải phương trình x 2 – 7x – 8 = 0
2. Cho phương trình x2 – 2x + m – 3 = 0 với m là tham số. Tìm các giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện 
Câu IV: (1,5 điểm) 
1. Giải hệ phương trình 
2. Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn điều kiện 
x + y > 1.
Câu V: (3,0 điểm) Cho nửa đường tròn tâm O đường kính AB = 2R và tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh AMOC là tứ giác nội tiếp đường tròn.
b) Chứng minh AMDE là tứ giác nội tiếp đường tròn.
c) Chứng mình 
ĐÁP ÁN – GỢI Ý GIẢI ĐỀ SỐ 6
Câu I: (2,5 điểm)
1. Thực hiện phép tính: 
2. Cho biểu thức: P = 
a) Tìm điều kiện của a để P xác định: 	P xác định khi 	
b) Rút gọn biểu thức P.
P ==
=
==
Vậy với thì P = 
Câu II: (1,5 điểm) 
1. Cho hai hàm số bậc nhất y = -x + 2 và y = (m+3)x + 4. Tìm các giá trị của m để đồ thị của hàm số đã cho là:
	a) Để hàm số y = (m+3)x + 4 là hàm số bậc nhất thì m + 3 0 suy ra m -3.
Đồ thị của hai hàm số đã cho là hai đường thẳng cắt nhau a a’
-1 m+3m -4 
Vậy với m -3 và m -4 thì đồ thị của hai hàm số đã cho là hai đường thẳng cắt nhau.
	b) Đồ thị của hàm số đã cho là Hai đường thẳng song song 
 thỏa mãn điều kiện m -3
Vậy với m = -4 thì đồ thị của hai hàm số đã cho là hai đường thẳng song song.
2. Tìm các giá trị của a để đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2).
Vì đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2) nên ta thay x = -1 và y = 2 vào hàm số ta có phương trình 2 = a.(-1)2 suy ra a = 2 (thỏa mãn điều kiện a 0)
Vậy với a = 2 thì đồ thị hàm số y = ax2 (a 0) đi qua điểm M(-1; 2).
Câu III: (1,5 điểm) 
1. Giải phương trình x 2 – 7x – 8 = 0 có a – b + c = 1 + 7 – 8 = 0 suy ra x1= -1 và x2= 8
2. Cho phương trình x2 – 2x + m – 3 = 0 với m là tham số. Tìm các giá trị của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện .
Để phương trình có hai nghiệm x1; x2 thì ’ 0 ó 1 – m + 3 0 ó m 4
Theo viet ta có: x1+ x2 =2 (1) và x1. x2 = m – 3 (2)
Theo đầu bài: = 6 (3)
Thế (1) và (2) vào (3) ta có: (m - 3)(2)2 – 2(m-3)=6 ó 2m =12 ó m = 6 Không thỏa mãn điều kiện m 4 vậy không có giá trị nào của m để phương trình có hai nghiệm x1; x2 thỏa mãn điều kiện .
Câu IV: (1,5 điểm) 
1. Giải hệ phương trình 
2. Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn điều kiện x + y > 1.
Mà x + y > 1 suy ra m + m + 1 > 1 2m > 0 m > 0.
Vậy với m > 0 thì hệ phương trình có nghiệm (x; y) thỏa mãn điều kiện x + y > 1.
Câu V: (3,0 điểm
HD Giải.
a) nên tứ giác AMCO nội tiếp
b) . Tứ giác AMDE có
D, E cùng nhìn AM dưới cùng một góc 900
Nên AMDE nội tiếp
c) Vì AMDE nội tiếp nên 
Vì AMCO nội tiếp nên 
Suy ra 
KỲ THI TUYỂN SINH THPT
MÔN THI: TOÁN
(Thời gian làm bài 120 phút – không kể thời gian giao đề cho thí sinh)
ĐỀ SỐ 7
---***---
Câu 1. (2,0 điểm)
	Cho biểu thức , với 
	a. Rút gọn biểu thức Q
	b. Tìm các giá trị nguyên của x để Q nhận giá trị nguyên.
Câu 2. (1,5 điểm)
	Cho phương trình , với x là ẩn số, 
	a. Giải phương trình đã cho khi m = – 2
	b. Giả sử phương trình đã cho có hai nghiệm phân biệt và . Tìm hệ thức liên hệ giữa và mà không phụ thuộc vào m.
Câu 3. (2,0 điểm)
	Cho hệ phương trình , với 
	a. Giải hệ đã cho khi m = –3
	b. Tìm điều kiện của m để phương trình có nghiệm duy nhất. Tìm nghiệm duy nhất đó. 
Câu 4. (2,0 điểm)
	Cho hàm số có đồ thị (P). Gọi d là đường thẳng đi qua điểm M(0;1) và có hệ số góc k.
	a. Viết phương trình của đường thẳng d
	b. Tìm điều kiện của k để đt d cắt đồ thị (P) tại hai điểm phân biệt.
Câu 5. (2,5 điểm)
	Cho tam giác nhọn ABC (AB < AC < BC) nội tiếp trong đường tròn (O). Gọi H là giao điểm của hai đường cao BD và CE của tam giác ABC 
	a. Chứng minh tứ giác BCDE nội tiếp trong một đường tròn
	b. Gọi I là điểm đối xứng với A qua O và J là trung điểm của BC. Chứng minh rằng ba điểm H, J, I thẳng hàng
	c. Gọi K, M lần lượt là giao điểm của AI với ED và BD. Chứng minh rằng 
ĐÁP ÁN – GỢI Ý GIẢI ĐỀ SỐ 7
Câu 1.
a. 
Vậy 
b. 
	Q nhận giá trị nguyên
	 khi khi 2 chia hết cho 
	 đối chiếu điều kiện thì 
Câu 2. Cho pt , với x là ẩn số, 
a. 	Giải phương trình đã cho khi m = – 2
	Ta có phương trình 
Vậy phương trinh có hai nghiệm và 
b. 
	Theo Vi-et, ta có 
	Suy ra 
Câu 3. 	Cho hệ phương trình , với 
a. Giải hệ đã cho khi m = –3
	Ta được hệ phương trình 
Vậy hệ phương trình có nghiệm với 
b. Điều kiện có nghiệm của phương trình
Vậy phương trình có nghiệm khi và 
Giải hệ phương trình khi 
 .
 Vậy hệ có nghiệm (x; y) với 
Câu 4. 
a. Viết phương trình của đường thẳng d
	Đường thẳng d với hệ số góc k có dạng 
	Đường thẳng d đi qua điểm M(0; 1) nên 
Vậy 
b. 
	Phương trình hoành độ giao điểm của (P) và d
	, có 
	d cắt (P) tại hai điểm phân biệt khi 
Câu 5. 
a. 	BCDE nội tiếp
	Suy ra BCDE nội tiếp đường tròn đường kính BC
b. 	H, J, I thẳng hàng
IB ^ AB; CE ^ AB (CH ^ AB)
Suy ra IB // CH
IC ^ AC; BD ^ AC (BH ^ AC)
Suy ra BH // IC
Như vậy tứ giác BHCI là hình bình hành
	J trung điểm BC Þ J trung điểm IH
Vậy H, J, I thẳng hàng
c. 	
	 cùng bù với góc của tứ giác nội tiếp BCDE
	 vì DABI vuông tại B
	Suy ra , hay 
	Suy ra DAEK vuông tại K
	Xét DADM vuông tại M (suy từ giả thiết)
	DK ^ AM (suy từ chứng minh trên)
Như vậy 
KỲ THI TUYỂN SINH THPT
MÔN THI: TOÁN
(Thời gian làm bài 120 phút – không kể thời gian giao đề cho thí sinh)
ĐỀ SỐ 8
---***---
Bài 1: (3, 0 điểm)
	Học sinh không sử dụng máy tính bỏ túi
Giải phương trình: 2x – 5 = 0
Giải hệ phương trình: 
Rút gọn biểu thức với 
Tính giá trị của biểu thức 
Bài 2: (2, 0 điểm)
	Cho parabol (P) và đường thẳng (d) có phương trình lần lượt là và
 (m là tham số, m 0).
	a) Với m = –1 , tìm tọa độ giao điểm của (d) và (P).
	b) Chứng minh rằng với mọi m 0 đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt.
Bài 3: (2, 0 điểm)
	Quãng đường từ Quy Nhơn đến Bồng Sơn dài 100 km. Cùng một lúc, một xe máy khởi hành từ Quy Nhơn đi Bồng Sơn và một xe ô tô khởi hành từ Bồng Sơn đi Quy Nhơn. Sau khi hai xe gặp nhau, xe máy đi 1 giờ 30 phút nữa mới đến Bồng Sơn. Biết vận tốc hai xe không thay đổi trên suốt quãng đường đi và vận tốc của xe máy kém vận tốc xe ô tô là 20 km/h. Tính vận tốc mỗi xe.
Bài 4: (3, 0 điểm)
 	Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua C kẻ dây MN vuông góc với OA tại C. Gọi K là điểm tùy ý trên cung nhỏ BM, H là giao điểm của AK và MN.
Chứng minh tứ giác BCHK là tứ giác nội tiếp.
Chứng minh AK.AH = R2 
Trên KN lấy điểm I sao cho KI = KM, chứng minh NI = KB.
ĐÁP ÁN – GỢI Ý GIẢI ĐỀ SỐ 8
Bài 1:
a) 2x – 5 = 0 
b) 
c)
d) 
Bài 2:
a) Với và lần lượt trở thành .
Lúc đó phương trình hoành độ giao điểm của và là: có nên có hai nghiệm là .
Với 
Với 
Vậy tọa độ giao điểm của và là và .
b) Phương trình hoành độ giao điểm của và là: .
Với thì là phương trình bậc hai ẩn x có với mọi m. Suy ra luôn có hai nghiệm phân biệt với mọi m. Hay với mọi m 0 đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt.
Bài 3:
Đổi 
Đặt địa điểm :
- Quy Nhơn là A
- Hai xe gặp nhau là C
- Bồng Sơn là B
Gọi vận tốc của xe máy là . ĐK : .
Suy ra :
Vận tốc của ô tô là . 
Quãng đường BC là : 
Quãng đường AC là : 
Thời gian xe máy đi từ A đến C là : 
Thời gian ô tô máy đi từ B đến C là : 
Vì hai xe khởi hành cùng lúc, nên ta có phương trình : 
Giải pt : 
Phương trình có hai nghiệm phân biệt : (thỏa mãn ĐK)
 (không thỏa mãn ĐK)
Vậy vận tốc của xe máy là . 
Vận tốc của ô tô là . 
Bài 4:
Tứ giác BCHK là tứ giác nội tiếp. 
Ta có : (góc nội tiếp chắn nữa đường tròn) 
hay 
Tứ giác BCHK có 
 tứ giác BCHK là tứ giác nội tiếp.
Dễ thấy 
 có cân tại 
 có MC là đường cao đồng thời là đường trung tuyến (gt) cân tại 
 là tam giác đều 
 là tam giác cân (KI = KM) có nên là tam giác đều .
Dễ thấy cân tại B có nên là tam giác đều 
Gọi E là giao điểm của AK và MI.
Dễ thấy KB // MI (vì có cặp góc ở vị trí so le trong bằng nhau) mặt khác nên tại E . 
Ta có : mặt khác (cùng chắn )
 hay 
 (đpcm)
KỲ THI TUYỂN SINH THPT
MÔN THI: TOÁN
(Thời gian làm bài 120 phút – không kể thời gian giao đề cho thí sinh)
ĐỀ SỐ 9
---***---
Câu 1. (2 điểm)
 1.Tính 
 2 .Xác định giá trị của a,biết đồ thị hàm số y = ax - 1 đi qua điểm M(1;5)
Câu 2: (3 điểm)
 1.Rút gọn biểu thức: với a>0,a
 2.Giải hệ pt: 
 3. Chứng minh rằng pt: luôn có nghiệm với mọi giá trị của m.
Giả sử x1,x2 là 2 nghiệm của pt đã cho,tìm giá trị nhỏ nhất của biểu thức
Câu 3: (1,5 điểm) 
 Một ôtô tải đi từ A đến B với vận tốc 40km/h. Sau 2 giờ 30 phút thì một ôtô taxi cũng xuất phát đi từ A đến B với vận tốc 60 km/h và đến B cùng lúc với xe ôtô tải.Tính độ dài quãng đường AB.
Câu 4: (3 điểm) 
 Cho đường tròn (O) và một điểm A sao cho OA=3R. Qua A kẻ 2 tiếp tuyến AP và AQ của đường tròn (O),với P và Q là 2 tiếp điểm.Lấy M thuộc đường tròn (O) sao cho PM song song với AQ.Gọi N là giao điểm thứ 2 của đường thẳng AM và đường tròn (O).Tia PN cắt đường thẳng AQ tại K.
 1.Chứng minh APOQ là tứ giác nội tiếp.
 2.Chứng minh KA2=KN.KP
 3.Kẻ đường kính QS của đường tròn (O).Chứng minh tia NS là tia phân giác của góc.
 4. Gọi G là giao điểm của 2 đường thẳng AO và PK .Tính độ dài đoạn thẳng AG theo bán kính R.
Câu 5: (0,5điểm)
 Cho a,b,c là 3 số thực khác không và thoả mãn:
 Hãy tính giá trị của biểu thức 
ĐÁP ÁN – GỢI Ý GIẢI ĐỀ SỐ 9
Câu
Ý
Nội dung
Điểm
1
1
KL:
1
2
Do đồ thị hàm số y = ax-1 đi qua M(1;5) nên ta có a.1-1=5a=6
KL:
1
2
1
KL:
0,5
0,5
2
KL:
1
3
 Xét Pt: 
Vậy pt luôn có nghiệm với mọi m
Theo hệ thức Viet ta có
Theo đề bài 
Vậy minB=1 khi và chỉ khi m = -1
KL:
0,25
0,25
0,5
3
Gọi độ dài quãmg đường AB là x (km) x>0
Thời gian xe tải đi từ A đến B là h
Thời gian xe Taxi đi từ A đến B là :h
Do xe tải xuất phát trước 2h30phút = nên ta có pt
Giá trị x = 300 có thoả mãn ĐK 
Vậy độ dài quãng đường AB là 300 km.
0,25
0,25
0,25
0,25
0,25
0,25
4
1
Xét tứ giác APOQ có 
(Do AP là tiếp tuyến của (O) ở P)
(Do AQ là tiếp tuyến của (O) ở Q)
,mà hai góc này là 2 góc đối nên tứ giác APOQ là tứ giác nội tiếp 
0,75
2
Xét AKN và PAK có là góc chung
 ( Góc ntcùng chắn cung NP)
Mà (so le trong của PM //AQ
AKN ~ PKA (gg) (đpcm)
0,75
3
Kẻ đường kính QS của đường tròn (O)
Ta có AQQS (AQ là tt của (O) ở Q)
Mà PM//AQ (gt) nên PMQS 
Đường kính QS PM nên Q

Tài liệu đính kèm:

  • docde_thi_vao_10.doc