Së GD vµ §T TØnh Long An §Ò thi ChÝnh thøc K× thi tuyÓn sinh líp 10 Trung häc phæ th«ng N¨m häc 2009-2010 M«n thi: To¸n Thời gian làm bài: 120 phút (không kể thời gian giao đề) Câu 1: (2đ) Rút gọn biểu thức a/ b/Giải phương trình: 7x2+8x+1=0 Câu2: (2đ) Cho biểu thức (với a>0) a/Rút gọn P. b/Tìm giá trị nhỏ nhất của P. Câu 3: (2đ) Hai người đi xe đạp cùng xuất phát một lúc từ A đến B với vận tốc hơn kém nhau 3km/h. Nên đến B sớm ,mộn hơn kém nhau 30 phút. Tính vận tốc của mỗi người .Biết quàng đường AB dài 30 km. Câu 4: (3đ) Cho đường tròn (O) đường kính AB, C là một điểm nằm giữa O và A Đường thẳng qua C vuông góc với AB cắt (O) tại P,Q.Tiếp tuyến tại D trên cung nhỏ BP, cắt PQ ở E; AD cắt PQ tại F .Chứng minh: a/ Tứ giác BCFD là tứ giác nội tiếp. b/ED=EF c/ED2=EP.EQ Câu 5: (1đ) Cho b,c là hai số thoả mãn hệ thức: Chứng minh rằng ít nhất 1 trong hai phương trình sau phải có nghiệm: x2+bx+c=0 (1) ; x2+cx+b=0 (2) ĐÁP ÁN : Câu 1: (2đ) b/Giải phương trình: 7x2+8x+1=0 (a=7;b=8;c=1) Ta có a-b+c=0 nên x1=-1; Câu 1: (2đ) a/ (với a>0) (Với a>0) b/Tìm giá trị nhỏ nhất của P. Vậy P có giá trị nhỏ nhất là khi Câu 3: (2đ) Gọi x(km/giờ )là vận tốc của người thứ nhất . Vận tốc của ngưươì thứ hai là x+3 (km/giờ ) Vậy vận tốc của người thứ nhất là 12 km/giờ. vận tốc của người thứ hai là 15 km/giờ. Câu 4: (3đ) a/ Tứ giác BCFD là tứ giác nội tiếp. (góc nội tiếp chắn nửađường tròn (o)) =>. Vậy Tứ giác BCFD nội tiếp được. b/ED=EF Xét tam giác EDF có (góc có đỉnh nằm trong đường tròn (O)). (góc tạo bởi tiếp tuyến và dây cung) Do PQAB => H là trung điểm của PQ( định lý đường kính dây cung)=> A là trung điểm của => tam giác EDF cân tại E => ED=EF c/ED2=EP.EQ Xét hai tam giác: EDQ;EDP có chung. (cùng chắn) =>EDQ EPD=> Câu 5: (1đ) .=> 2(b+c)=bc(1) x2+bx+c=0 (1) Có 1=b2-4c x2+cx+b=0 (2) Có 2=c2-4b Cộng 1+2= b2-4c+ c2-4b = b2+ c2-4(b+c)= b2+ c2-2.2(b+c)= b2+ c2-2bc=(b-c) 0. (thay2(b+c)=bc ) Vậy trong 1;2có một biểu thức dương hay ít nhất 1 trong hai phương trình x2+bx+c=0 (1) ; x2+cx+b=0 (2) phải có nghiệm:
Tài liệu đính kèm: