SỞ GD-ĐT QUẢNG BÌNH KỲ THI TUYỂN VÀO LỚP 10 THPT ĐỀ CHÍNH THỨC NĂM HỌC 2015 - 2016 Khóa ngày `19/06/2015 MÔN: TOÁN Thời gian làm bài: 120 phút (không kể thời gian giao đề) MÃ ĐỀ 264 Câu 1: (2.0điểm): Cho biểu thức A= với x Rút gọn biểu thức A. Tìm x khi A = Câu 2: (1.5điểm): Cho hàm số: y = (m-1)x + m + 3 với m (m là tham số) Tìm giá trị của m để đồ thị của hàm số đi qua điểm M(1; -4) Tìm giá trị của m để đồ thị của hàm số song song với đường thẳng (d): y = -2x + 1 Câu 3: (2.0điểm): Cho phương trình: x2 – (2m+1)x + m2 + m -2 = 0 (1) (m là tham số). Giải phương trình (1) khi m = 2 Tìm m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thoả mãn: x1(x1 -2x2) + x2(x2 -3x1) = 9 Câu 4: (1.0điểm): Cho x, y là hai số thực thỏa mãn: x > y và xy = 1 Chứng minh rằng: Câu 5: (3.5điểm): Cho tam giác ABC có ba góc đều nhọn nội tiếp đường tròn tâm O, hai đường cao BD và CE cắt đường tròn (O) theo thứ tự tại P và Q (PB, QC). Chứng minh tứ giác BCDE nội tiếp được trong một đường tròn. Gọi H là giao điểm của BD và CE. Chứng minh HB.HP = HC.HQ. Chứng minh OA vuông góc với DE. HƯỚNG DẪN VÀ ĐÁP ÁN CHẤM Câu Nội dung Điểm 1 2.0điểm 1a Cho biểu thức A= = = == = với x 1b A= với x Khi A = ta có = x- 1 = 2015 x = 2016 (TMĐK) Vậy khi A = thì x = 2016 2 1,5điểm 2a Ta có M(1; - 4) x = 1; y = -4 thay vào hàm số đã cho ta có: -4 = (m- 1).1 + m +3 - 4 = m-1 +m +3 -4-2= 2m -6 = 2m m= -3 (TMĐK) Với m = -3 thì đồ thị hàm số đã cho đi qua điểm M (1; -4) 2b Để đồ thị hàm số đã cho song song với đường thẳng (d): y =-2x +1 Khi và chỉ khi a = a/ m-1 = -2 m = -1 m= -1 bb/ m+3 1 m-2 Vậy với m = -1 thì đồ thị hàm số y = (m-1)x + m + 3 song song với đường thẳng (d): y =-2x +1 3 2,0điểm 3a Khi m = 2 thì phương trình (1) trở thành : x2 – 5x + 4 = 0 Phương trình có dạng: a + b +c = 0 hay 1 +(-5) + 4 = 0 Phương trình có hai nghiệm x1 = 1; x2 = 4 3b Để phương trình (1) có hai nghiệm phân biệt x1, x2 khi và chỉ khi: -4(m2 +m-2) >0 4m2 +4m+ 1 -4m2 – 4m+8 = 0 9 > 0 phương trình (1) luôn có hai nghiệm phân biệt x1, x2 Theo định lí Viet x1 +x2 = 2m +1, x1x2 = m2 + m -2 Theo đề ra: x1(x1 -2x2) + x2(x2 -3x1) = 9 = 9 =9 = 9 =9 (2m+1)2 – 7(m2 + m -2) = 9 4m2 +4m+ 1 - 7m2 – 7m+14= 9 3m2 +3m - 6= 0 Phương trình có dạng: a + b +c = 0 hay 3 +3+ (-6) = 0 m1 = 1; m2 = -2 Vậy với m1 = 1; m2 = -2 thì phương trình (1) có hai nghiệm phân biệt x1, x2 và thỏa mãn: x1(x1 -2x2) + x2(x2 -3x1) = 9 4 1,0điểm Vì x > y nên x – y >0 Nên Suy ra ( Khai phương hai vế) x2 +y2 x2 +y2 -0 x2 +y2 + 2 -- 20 x2 +y2 + -- 2xy0 (xy=1 nên 2.xy = 2) (x-y -)2 0. Điều này luôn luôn đúng. Vậy ta có điều phải chứng minh. 5 3,5điểm 5a Ta có BD AC (gt) => , CEAB (gt) => Nên điểm D và E cùng nhìn đoạn thẳng BC dưới một góc vuông Vậy tứ giác BCDE nội tiếp đường tròn đường kính BC 5b Xét BHQ và CHP có : (đối đỉnh) (Hai góc nội tiếp cùng chắn cung BC của đường tròn (O)) Nên BHQ đồng dạng với CHP (g-g) Suy ra: Hay BH.HP = HC . HQ 5c Ta có ( góc nội tiếp cùng chắn cung BE của đường tròn ngoại tiếp tứ giác BCDE) (1) (góc nội tiếp cùng chắn cung BQ của đường tròn (O)) (2) Từ (1) và (2) => mà hai góc này lại ở vị trí đồng vị => PQ//DE (*) Ta có (góc nội tiếp cùng chắn cung DE của đường tròn nội tiếp tứ giác BCDE) Hay (3) Mặt khác: OP = OQ (cùng là bán kính của đường (O) ) (4) Từ (3) và (4) => OA là đường trung trực của đoạn thẳng PQ => OA PQ (*) (*) Từ (*) và (*) (*) suy ra OA DE (đpcm) Giải cách 2 câu c x 5c Kẽ tiếp tuyến Ax. Ta có góc (Vì cùng chắn cung AC) Mà (Vì tứ giác BCDE nội tiếp) Nên . Mà hai góc ở vị trí so le trong Suy ra Ax // DE. Mà OA vuông góc Ax nên OA vuông góc DE.
Tài liệu đính kèm: