ĐỀ ÔN TẬP THI VÀO 10 – SỐ 25. Bài 1. Rút gọn các biểu thức sau: A = B = Bài 2. a) Giải phương trình: x2 - 6x - 7 = 0 b) Giải hệ phương trình: Bài 3. Cho phương trình: x2 + 2(m – 1)x – 2m – 3 = 0 (m là tham số). a) Chứng minh phương trình luôn có 2 nghiệm phân biệt x1; x2 . b) Tìm giá trị của m sao cho (4x1 + 5)(4x2 + 5) + 19 = 0. Bài 4. Cho đường tròn tâm O, đường kính AB. Lấy điểm C thuộc (O) (C không trùng với A, B), M là điểm chính giữa cung nhỏ AC. Các đường thẳng AM và BC cắt nhau tại I, các đường thẳng AC và BM cắt nhau tại K. a) Chứng minh rằng: và rABI cân b) Chứng minh tứ giác MICK nội tiếp c) Đường thẳng BM cắt tiếp tuyến tại A của (O) ở N. Chứng minh đường thẳng NI là tiếp tuyến của đường tròn (B;BA) và NIMO. d) Đường tròn ngoại tiếp rBIK cắt đường tròn (B;BA) tại D (D không trùng với I). Chứng minh ba điểm A, C, D thẳng hàng. Bài 5. Cho các số thực dương x, y thỏa mãn Tìm giá trị nhỏ nhất của biểu thức: Q = xy – 3y - 2x – 3. HƯỚNG DẪN GIẢI. BÀI NỘI DUNG 1 a) A = = b) B = = = 2 a) x2 - 6x - 7 = 0 Vậy: S = b) Vậy: (x; y) = (2; 3) 3 a) x2 + 2(m – 1)x – 2m – 3 = 0 (1) Có: r/ = (m – 1)2 – (- 2m – 3) = m2 – 2m + 1 + 2m + 3 = m2 + 4 4 > 0 với mọi m r/ > 0 với mọi m Nên phương trình đã cho có 2 nghiện phân biệt x1; x2 (Đpcm) b) Theo bài ra, ta có: (4x1 + 5)(4x2 + 5) + 19 = 0 (2) áp dụng hệ thức Vi – ét, ta có: (3) Thay (3) vào (2), ta có: Vậy với m = thì (4x1 + 5)(4x2 + 5) + 19 = 0. 4 Hình vẽ a) Chứng minh rằng: và rABI cân Vì M là điểm chính giữa cung nhỏ BC (GT) Mà: (Định lý góc nội tiếp) (Hệ quả góc nội tiếp) Có: M(O) và AB là đường kính (Hệ quả góc nội tiếp) tại M. Xét rABI có: BM là đường cao đồng thời là đường phân giác Nên: rABI cân tại B (Dấu hiệu nhận biết tam giác cân) b) Có: C(O) và AB là đường kính (Hệ quả góc nội tiếp) tại C Mặt khác: (Vì BMAI) Mà 2 góc này ở vị trí đối nhau Vậy MICK là tứ giác nội tiếp (Đpcm) c) Có: rABI cân tại B (cma) BA = BI mà BA là bán kính của (B;BA) I(B;BA) (1) Vì AN là tiếp tuyến của (O) (GT) ANAB tại A Xét rABN và rIBN có: AB = BI ( vì rABI cân tại B) (cma) rABN = rIBN (c.g.c) BN cạnh chung (2 góc t/ư) mà: NIIB (2) Từ (1) và (2) suy ra: NI là tiếp tuyến của(B;BA) (Đpcm) Vì M là điểm chính giữa cung nhỏ BC (GT) OMAC (Đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy) Mà: tại C (cmb) OM//BI ( cùng vuông góc AC) Mặt khác: NIIB (cmt) (Từ đến //) d) Có: (góc nội tiếp và góc ở tâm cùng chắn cung AI của (B;BA); mà: (vì ,cma) Mà (cùng chắn của đường tròn ngoại tiếp rIKB) A, K, D thẳng hàng A, C, D thẳng hàng (Vì A, K, C thẳng hàng) 5 Có với mọi x, y dương = 0 y = 2x + 3 Q = x(2x + 3) – 3(2x + 3 ) – 2x – 3 = 2x2 + 3x – 6x - 9 – 2x -3 = 2x2 – 5x – 12 = = = với mọi x > 0 Dấu bằng xảy ra khi x - = 0 GTNN của Q = và y =
Tài liệu đính kèm: