Đề kiểm tra chất lượng cuối năm môn Toán 7

docx 16 trang Người đăng khanhhuyenbt22 Ngày đăng 17/06/2022 Lượt xem 366Lượt tải 0 Download
Bạn đang xem tài liệu "Đề kiểm tra chất lượng cuối năm môn Toán 7", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề kiểm tra chất lượng cuối năm môn Toán 7
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2003 – 2004
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
II/Tự luận
Câu 3:Cho hai đơn thức: và 
a)Tìm tích của 2 đơn thức trên rồi tìm bậc của đơn thức tìm được?
b)Tính giá trị của đơn thức vừa tìm được tại x = -1; y = 1
Câu 4:Cho 2 đa thức P(x)=
 Q(x)=
a)Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.
b)Tính: P(x) + Q(x); P(x) – Q(x) 
Bài 5:Cho tam giác ABC vuông(); . Tia phân giác của góc cắt AC tại E. Kẻ (H thuộc BC).Kẻ CKBE (K thuộc tia BE). Chứng minh rằng:
a)∆ ABE = ∆HBE 
b)HB = HC
c)EC là tia phân giác của góc 
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2004 – 2005
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
II/Tự luận
Câu 1: Tìm hiểu thời gian (đơn vị:phút) làm bài tập của học sinh lớp 7A trường B người ta lập được bảng sau:
Thời
gian
3
4
5
6
7
8
9
10
11
12
Số HS
1
3
5
9
6
4
3
2
1
1
N=35
a)Dấu hiệu là gì? Tìm mốt của dấu hiệu?
b)Tính thời gian trung bình làm bài tập đó của học sinh lớp 7A.
c)Nhận xét về thời gian làm bài tập của học sinh so với thời gian trung bình. 
Câu 2: Cho các đa thức:
f(x)= g(x)=
h(x)=
a)Tính:f(x) – g(x) + h(x).
b)Tìm x sao cho:f(x) – g(x) + h(x)=0
Câu 3: Cho ∆ABC cân tại A. Đường cao AH.Biết AB=5cm;BC=6cm. Vẽ trung tuyến BE và CF của ∆ABC(;FAB). Gọi giao điểm của BE và CF là G.
a)Tính độ dài các đoạn thẳng: BH;AH.
b)Chứng minh ba điểm A;G;H thẳng hàng.
c)Chứng minh: 
Câu 4: Tìm giá trị nguyên của biến x để biểu thức B= có giá trị nhỏ nhất
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2005 – 2006
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Bài 1: Một xạ thủ bắn súng có số điểm đạt được sau mỗi lần bắn được ghi lại trong bảng.
8
9
10
9
9
10
8
7
9
9
10
7
10
9
8
10
8
9
8
8
10
7
9
9
9
8
7
10
9
9
a)Lập bảng tần số
b)Tìm số trung bình cộng của dấu hiệu(làm tròn đến hai chữ số phần thập phân)
Bài 2: Cho các đa thức:
P(x)=; Q(x)=; R(x)=
a)Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.
b)Tính P(x)+Q(x). c) P(x)+Q(x) – R(x). d)CMR: R(x) không có nghiệm.
Bài 3:Cho ∆ABC vuông tại A; đường cao AH.
1.Biết AH=4cm,HB=2cm,HC=8cm:
a)Tính độ dài các cạnh AB,AC.
2.Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi. ∆ ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 4: Cho 2 đa thức: f(x)=
 g(x)=
a)Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.
b)Tính hiệu h(x)=f(x) – g(x)
c) Tìm nghiệm của đa thức h(x)
 Câu 6: Cho tam giác ABC (AB<AC), trên cạnh AB và AC lần lượt lấy hai điểm D,E sao cho BD=CE.Gọi I là trung điểm của DE, vẽ điểm P sao cho I là trung điểm BP. Chứng minh:
a)IDB=IEP.
b)EPC cân.
c).
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2006 – 2007
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Bài 2: 
1)Tìm x,y,z biết: và x – y + z=12
2)Tìm x biết: =4
Bài 3: Cho các đa thức f(x)=
 g(x)=
 h(x)=
1)Tính f(x) – g(x) + h(x).
2)Tìm giá trị của x sao cho f(x) – g(x) + h(x) = 0
Bài 4: Cho tam giác ABC cân tại A. Các phân giác BD và CE của tam giác cắt nhau ở I(DAC;EAB).
1) Chứng minh AD= AE
2)BIE=CID
3)Cho biết AB=AC=5cm,BC=6cm. Gọi H là giao điểm của AI và BC. Tính AH
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2007 – 2008
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Bài 2:
1)Tính Giá trị của biều thức: tại x = 3; y = – 5 ;
2) Tìm x biết : a) 2x – 9 = – 33 ; b)
Bài 3: Một mảnh vườn hình chữ nhật có chu vi bằng 100m và tỉ số giữa hai cạnh của nó là .Tính diện tích của mảnh vườn đó.
Bài 4: Cho tam giác ABC cân ở A (). Từ B và C theo thứ tự kẻ BDAC (DAC),CEAB (EAB). Gọi O là giao điểm của BD và CE.
1) Chứng minh 
2)Chứng minh cân
3)Kẻ EH là tia phân giác của góc BEO (HBO), DK là tia phân giác của góc CDO (KCO).Chứng minh EH = DK.
4)Gọi I là giao điểm của EH và DK. Chứng minh ba điểm A;O;I thẳng hàng.
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2008 – 2009
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Bài 1:
1. Thực hiện các phép tính sau :
a) 3.7+ (-5).6; b)
2.Tính giá trị biểu thức A= tại x=4.
Bài 2:
1.Đồ thị hàm số y=ax đi qua điểm M(1;-2). Hãy tìm a.
2.Cho 2 đa thức: f(x)=; g(x)=
Tính f(x) +g(x).
Bài 3: Trong đợt thi đua chào mừng ngày 26/3, hai bạn An và Bình hái được 48 bông hoa điểm tốt. Tính số hoa điểm tốt của mỗi bạn, biết rằng tỉ số hoa điểm tốt của An và Bình là .
Bài 4: 
Cho ABC cân tại A có góc A= . Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E Sao cho BD=CE. Kẻ DH và EK cùng vuông góc với đường thẳng BC.(H,KBC)
1. Tính góc B,góc C của tam giác ABC.
2.Chứng minh DH=EK.
3.Gọi M là trung điểm của HK, chứng minh M là trung điểm của DE.
Bài 5: Chứng minh rằng nếu thì với b,c 0
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2009 – 2010
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Bài 1: Tính giá trị của biểu thức A= tại x = 1; x = – 6 .
Bài 2: Thực hiện phép tính sau:
a) 2010:(-5)+400 – 1; b); c)
Bài 3: Cho 2 đa thức: f(x)= 
 g(x)=
Sắp xếp mỗi đa thức trên theo lũy thừa giảm dần của biến và tính tổng f(x)+g(x).
Bài 4: Cho ABC vuông tại A; có AB=3cm, BC=5cm.
1)Tính AC.
2)Kẻ BD là tia phân giác của góc ABC(DAC).Từ D kẻ DHBC(HBC). Chứng minh BDAH.
3)Gọi E là giao điểm của DH và AB. Tính AE.
Bài 5: Tìm hai số hữu tỉ a và b sao cho a+b=a.b=a:b (b0).
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2010 – 2011
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
 Bài 1: Thực hiện phép tính sau:
a)8.5+(-3).9 b) c)
Bài 2:Cho 2 đa thức:f(x)= 
 g(x)=
a)Sắp xếp hai đa thức f(x) và g(x) theo lũy thừa giảm dần của biến.
b)Tính tổng f(x)+g(x) và hiệu f(x) – g(x).
c)Tìm nghiệm của đa thức h(x)=f(x) + g(x).
Bài 4: Cho tam giác ABC cân tại A có góc A bằng .Trên cạnh BC lấy các điểm D và E sao cho BD=CE<.
a)Tính số đo các góc B, góc C của tam giác ABC.
b)Chứng minh tam giác ADE cân.
c)Kẻ DH vuông góc với AB và EK vuông góc với AC (HAB, KAC). Chứng minh AH=AK.
d)Gọi M là trung điểm BC. Chứng minh ba đường thẳng AM, DH và EK cắt nhau tại một điểm.
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2011 – 2012
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Bài 1:Thực hiện các phép tính sau :
a)72:8+(-5).7 b) c)
Bài 2:
1)Tính giá trị biểu thức P= tại x= - 3.
2)Tìm x biết:
a) b)
Bài 3: Cho hai đa thức: f(x)=
 g(x)=
1)Sắp xếp hai đa thức f(x) và g(x) theo lũy thừa giảm dần của biến.
2)Tính f(x)+g(x) và f(x) – g(x).
Bài 4:Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm.
1)Tính độ dài BC.
2)Kẻ BM là tia phân giác của góc ABC (MAC), MH vuông góc với BC (HBC). Chứng minh BMA=BMH.
3)Chứng minh AM<MC.
4)Trên tia đối của tia AB lấy điểm N sao cho AN=CH. Chứng minh ba điểm N,M,H thẳng hàng.
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2012 – 2013
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Bài 1: Thực hiện phép tính:
a)-5(12-8)+11(-3); b);
c); d).
Bài 2: Cho biểu thức M=. Tính giá trị của biểu thức tại 
x = - 1;y = 2.
Bài 3: Cho hai đa thức: P(x)=
 Q(x)=
a)Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến;
b)Tính P(x) + Q(x);
c)Tính P(x) – Q(x).
Bài 4: Cho tam giác ABC vuông tại A với AB=6cm, BC=10cm. Kẻ đường cao AH (HBC), trên đoạn HC lấy điểm D sao cho HD=HB.
a) Tính độ dài cạnh AC;
b)Chứng minh tam giác BAD cân;
c)Từ C kẻ CE vuông góc với đường thẳng AD (E thuộc đường thẳng AD), đường thẳng CE cắt AH tại M. Chứng minh CB là tia phân giác của góc ACM.
Bài 5: Tìm hệ số a,b,c của đa thức G(x)= biết G(1)=2013 và a,b,c theo thứ tự tỉ lệ với 3,2,1.
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2013 – 2014
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Bài 1:
1. Thực hiện các phép tính sau:
a)(-7).8+2.30 b)
2.Tính giá trị biểu thức A= tại , biết A>0.
Bài 2: Tìm x, biết:
a) b) 2(x - 0,27) - 5,1= 2,9
Bài 3: Cho 2 đa thức: f(x)=;
 g(x)=.
a)Sắp xếp đa thức trên theo lũy thừa giảm dần của biến;
b)Tính h(x)=f(x)+g(x);
c)Tìm nghiệm của đa thức h(x).
Bài 4: Cho tam giác ABC có AB=3cm;AC=4cm;BC=5cm. Kẻ đường cao AH (HBC).
1)Chứng tỏ tam giác ABC là tam giác vuông;
2)Trên cạnh BC lấy điểm D sao cho BD = BA, trên cạnh AC lấy điểm E sao cho AE = AH. Gọi F là giao điểm của DE và AH.Chứng
minh :
a)DE vuông góc với AC;
b)Tam giác ACF là tam giác cân;
c) BC + AH > AC + AB.
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2014 – 2015
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Bài 1: Thực hiện phép tính:
Bài 2:
Tìm x, biết:
Cho đơn thức 
 Hãy thu gọn và chỉ ra hệ số, phần biến và bậc của đơn thức A.
Bài 3: 
 Cho hai đa thức: 
Thu gọn và sắp xếp hai đa thức P(x) và Q(x) theo lũy thừa giảm của biến;
Tính P(x) + Q(x);
Chứng tỏ rằng đa thức H(x) = P(x) + Q(x) không có nghiệm.
Bài 4:
 Cho ∆ABC vuông tại B có . Vẽ tia phân giác AD của góc BAC (D∈BC), từ D vẽ DEAC (E∈AC). Chứng minh rằng:
AB = AE; b) ADBE; c) DC > AB. 
Bài 5:
 Cho hai số x, y thỏa mãn: .
Tính giá trị của biểu thức: 
SỞ GD & ĐT BẮC NINH
PHÒNG KT&KĐ CHẤT LƯỢNG
KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
Năm học: 2015 – 2016
Môn thi: Toán 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Bài 1. (3đ)
Thực hiện các phép tính sau:
Tìm x, biết:
Bài 2. (1đ) Cho đơn thức 
Hãy thu gọn đơn thức và chỉ ra hệ số, phần biến và bậc của đơn thức M.
Bài 3. (2.5đ) Cho hai đa thức và 
 .
Thu gọn và sắp xếp hai đa thức f(x) và g(x) theo lũy thừa giảm dần của biến;
Tính f(x) + g(x);
Tìm nghiệm của h(x) = f(x) + g(x).
Bài 4. (3đ) Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AC, CK vuông góc với AB . Biết AB = 10 cm, AH = 6cm.
Tính BH, BC.
Chứng minh hai tam giác ABH, ACK bằng nhau.
Lấy điểm D bất kỳ nằm giữa B và C. Gọi E và F theo thứ tự là hình chiếu của điểm D trên AC và AB. Tính DE + DF.
Bài 5. (0,5đ)
 Bạn An đã có một số bài kiểm tra môn Toán. Để có được điểm trung bình là 9,0 thì bài kiểm tra tới phải được điểm 10, nhưng thực tế bài đó bạn An chỉ được 7,5 điểm nên điểm trung bình là 8,5. Hỏi bạn An đã có trước đó bao nhiêu bài kiểm tra?(Các bài kiểm tra đều tính hệ số 1)
-------------------Hết-------------------
SỞ GD & ĐT BẮC NINH
PHÒNG KHẢO THÍ VÀ KIỂM ĐỊNH
ĐỀ KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
NĂM HỌC 2016 – 2017
Môn: Toán – Lớp 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Bài 1. (2,0 điểm)
Thực hiện các phép tính sau:
Bài 2. (2,5 điểm)
Tính giá trị của đa thức tại .
Tìm x, biết:
Bài 3. (2,0 điểm)
Cho hai đa thức và .
Sắp xếp các đa thức theo lũy thừa giảm dần của biến;
Tính A(x) + B(x);
Tính A(x) – B(x).
Bài 4. (3,0 điểm)
Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm.
Tính BC;
Tia phân giác của góc B cắt cạnh AC tại D. Kẻ DM vuông góc với BC tại M. Chứng minh rằng hai tam giác ABD, MBD bằng nhau;
Gọi giao điểm của DM và AB là E. Chứng minh rằng tam giác BEC cân;
Gọi K là trung điểm của EC. Chứng minh ba điểm B, D, K thẳng hàng.
Bài 5. (0,5 điểm)
 Cho đa thức biết 29a + 2c = 3b.
Chứng minh rằng f(2).f(-5) ≤ 0.
-------------------Hết-------------------
SỞ GD & ĐT BẮC NINH
PHÒNG QUẢN LÝ CHẤT LƯỢNG
ĐỀ KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
NĂM HỌC 2017 – 2018
Môn: Toán – Lớp 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Câu 1. (3,0 điểm)
Thực hiện các phép tính sau:
Tìm x, biết:
Câu 2. (1,0 điểm)
	Số cây trồng được của các học sinh lớp 7A được ghi lại như sau:
7
10
9
5
9
6
7
8
5
8
9
9
8
8
6
7
9
6
9
5
4
5
10
8
7
6
9
5
6
4
6
8
6
5
7
8
Hãy lập bảng tần số.
Tính trung bình cộng của dấu hiệu (làm tròn đến chữ số thập phân thứ hai).
Câu 3. (2,5 điểm)
Thu gọn và sắp xếp các hạng tử của đa thức sau theo lũy thừa giảm của biến: 
Cho hai đa thức 
Tính B(x) + C(x) và B(x) – C(x).
Câu 4. (3,0 điểm)
Cho tam giác ABC vuông tại B, đường phân giác AD (D ∈ BC). Kẻ BO vuông góc với AD (O ∈ AD), BO cắt AC tại E. Chứng minh:
Hai tam giác ABO, AEO bằng nhau.
Tam giác BAE cân.
AD là đường trung trực của BE.
Kẻ BK vuông góc với AC (K ∈ AC). Gọi M là giao điểm của BK với AD. Chứng minh rằng ME song song với BC.
Bài 5. (0,5 điểm)
 Tìm hai số tự nhiên x, y biết 
-------------------Hết-------------------
SỞ GD & ĐT BẮC NINH
PHÒNG QUẢN LÝ CHẤT LƯỢNG
ĐỀ KIỂM TRA CHẤT LƯỢNG CUỐI NĂM
NĂM HỌC 2018 – 2019
Môn: Toán – Lớp 7
Thời gian làm bài: 90 phút (không kể thời gian giao đề)
Câu 1. (1,5 điểm)
	Điểm kiểm tra học kỳ 1 môn Toán của tất cả học sinh lớp 7A được ghi lại như sau:
9
8
7
8
7
9
10
4
8
7
7
6
5
7
8
8
7
7
5
6
3
9
10
6
5
7
6
9
8
7
Dấu hiệu ở đây là gì? Số các giá trị của dấu hiệu là bao nhiêu?
Lập bảng tần số và tính trung bình cộng của dấu hiệu.
Câu 2. (2,0 điểm)
Cho đơn thức . Thu gọn và tính giá trị của A khi biết .
Tìm hệ số a của đa thức biết rằng .
Câu 3. (2,5 điểm)
Cho các đa thức:
 và .
Thu gọn và sắp xếp hai đa thức F(x) và G(x) theo lũy thừa giảm dần của biến.
Tính M(x) = F(x) – G(x); Tìm nghiệm của đa thức M(x).
Tìm đa thức N(x) biết N(x) + F(x) = – G(x).
Câu 4. (3,5 điểm)
Cho tam giác ABC vuông tại A, có AB = 9cm, BC = 15cm. Trên tia đối của tia AB lấy điểm E sao cho A là trung điểm của BE.
Tính độ dài cạnh AC và so sánh các góc của tam giác ABC.
Chứng minh rằng hai tam giác ABC và AEC bằng nhau.
Vẽ đường trung tuyến BH của tam giác BEC cắt cạnh AC tại M. Chứng minh M là trọng tâm của tam giác BEC và tính độ dài đoạn CM.
Từ A kẻ đường thẳng song song với EC, đường thẳng này cắt cạnh BC tại K. Chứng minh rằng ba điểm E, M, K thẳng hàng.
Bài 5. (0,5 điểm)
 	Cho đa thức với a là số nguyên dương và 
Chứng minh là hợp số.
-------------------Hết-------------------

Tài liệu đính kèm:

  • docxde_kiem_tra_chat_luong_cuoi_nam_mon_toan_7.docx