Đề 8 thi thử vào lớp 10 năm học 2011- 2012 môn: Toán thời gian: 120 phút (không kể thời gian giao đề)

doc 3 trang Người đăng phongnguyet00 Lượt xem 862Lượt tải 0 Download
Bạn đang xem tài liệu "Đề 8 thi thử vào lớp 10 năm học 2011- 2012 môn: Toán thời gian: 120 phút (không kể thời gian giao đề)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề 8 thi thử vào lớp 10 năm học 2011- 2012 môn: Toán thời gian: 120 phút (không kể thời gian giao đề)
Phòng GD & ĐT Quảng Trạch
Trường THCS Cảnh Hóa
Họ tên HS: 
Số báo danh:..
Đề THI THử VàO LớP 10 NĂM HọC 2011- 2012
mÔN: tOáN
Thời gian: 120 phút(Không kể thời gian giao đề)
Đề có: 01 trang, gồm có 04 câu Mã đề 08
Câu 1: a) Xác định x R để biểu thức :A = Là một số tự nhiên
b. Cho biểu thức: P = Biết x.y.z = 4 , tính .
Câu 2:Cho các điểm A(-2;0) ; B(0;4) ; C(1;1) ; D(-3;2)
Chứng minh 3 điểm A, B ,D thẳng hàng; 3 điểm A, B, C không thẳng hàng.
Tính diện tích tam giác ABC.
Câu3 Giải phương trình: 
Câu 4 Cho đường tròn (O;R) và một điểm A sao cho OA = R. Vẽ các tiếp tuyến AB, AC với đường tròn. Một góc éxOy = 450 cắt đoạn thẳng AB và AC lần lượt tại D và E.
	Chứng minh rằng:
	a.DE là tiếp tuyến của đường tròn ( O ).
	b. 
hướng dẫn và biểu điểm chấm 08
Đề THI THử VàO LớP 10 NĂM HọC 2011 - 2012
Câu 1:	 a.
A =
	A là số tự nhiên -2x là số tự nhiên x = 
	(trong đó k Z và k 0 )
	b.Điều kiện xác định: x,y,z 0, kết hpọ với x.y.z = 4 ta được x, y, z > 0 và 
Nhân cả tử và mẫu của hạng tử thứ 2 với ; thay 2 ở mẫu của hạng tử thứ 3 bởi ta được:
 P = 	(1đ)
 vì P > 0	
Câu 2:	a.Đường thẳng đi qua 2 điểm A và B có dạng y = ax + b
Điểm A(-2;0) và B(0;4) thuộc đường thẳng AB nên b = 4; a = 2
Vậy đường thẳng AB là y = 2x + 4.	
Điểm C(1;1) có toạ độ không thoả mãn y = 2x + 4 nên C không thuộc đường thẳng AB A, B, C không thẳng hàng.	
Điểm D(-3;2) có toạ độ thoả mãn y = 2x + 4 nên điểm D thuộc đường thẳng AB A,B,D thẳng hàn
	b.Ta có :
	AB2 = (-2 – 0)2 + (0 – 4)2 =20
	AC2 = (-2 – 1)2 + (0 –1)2 =10
	BC2 = (0 – 1)2 + (4 – 1)2 = 10
 AB2 = AC2 + BC2 DABC vuông tại C
Vậy SDABC = 1/2AC.BC = ( đơn vị diện tích )
Câu 3:	Đkxđ x1, đặt ta có hệ phương trình:
B
M
A
O
C
D
E
 Giải hệ phương trình bằng phương pháp thế ta được: v = 2 	
	 x = 10.	
Câu 4
a.áp dụng định lí Pitago tính được 	
AB = AC = R ABOC là hình 
vuông (0.5đ)
Kẻ bán kính OM sao cho 
éBOD = éMOD
éMOE = éEOC (0.5đ)
Chứng minh DBOD = DMOD
	éOMD = éOBD = 900
Tương tự: éOME = 900
D, M, E thẳng hàng. Do đó DE là tiếp tuyến của đường tròn (O).	
	b.Xét DADE có DE < AD +AE mà DE = DB + EC 
2ED < AD +AE +DB + EC hay 2DE < AB + AC = 2RDE < R	
Ta có DE > AD; DE > AE ; DE = DB + EC
 Cộng từng vế ta được: 3DE > 2R DE > R
	Vậy R > DE > R	

Tài liệu đính kèm:

  • docDE_THI_VAO_LOP_10_THPT_DE_08.doc