Đề 7 thi chọn học sinh giỏi môn toán 8 thời gian : 120 phút ( không kể thời gian giao đề )

doc 3 trang Người đăng phongnguyet00 Lượt xem 895Lượt tải 0 Download
Bạn đang xem tài liệu "Đề 7 thi chọn học sinh giỏi môn toán 8 thời gian : 120 phút ( không kể thời gian giao đề )", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề 7 thi chọn học sinh giỏi môn toán 8 thời gian : 120 phút ( không kể thời gian giao đề )
UBND HUYỆN KIM SƠN
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
------------------------------
ĐỀ THI CHỌN HỌC SINH GIỎI - 1
MÔN TOÁN 8
Thời gian : 120 phút ( không kể thời gian giao đề )
A. ĐỀ BÀI
Bài 1. ( 2 điểm ): 
a) Phân tích đa thức sau thành nhân tử :
x3(x2 - 7 )2 - 36x
b) Dựa vào kết quả trên hãy chứng minh:
A= n3(n2 - 7 )2 - 36n chia hết cho 210 với mọi số tự nhiên n.
 Bài 2. ( 2 điểm ):
Cho biểu thức A = với x khác -1 và 1.
a, Rút gọn biểu thức A.
b, Tính giá trị của biểu thức A tại x .
c, Tìm giá trị của x để A < 0.
Bài 3. ( 1,0 điểm ) Cho ba số a, b, c thỏa mãn abc = 2004.
Tính : M = .
Bài 4. (4 điểm ) : Cho hình vuông ABCD có cạnh bằng 4 cm. Gọi M, N lần lượt là trung điểm của AB , BC. Gọi P giao điểm của AN với DM. 
Chứng minh : tam giác APM là tam giác vuông.
Tính diện tích của tam giác APM
Chứng minh tam giác CPD là tam giác cân.
Bài 5. ( 1 điểm ): Tìm các giá trị x, y nguyên dương sao cho : x2 = y2 + 2y + 13.
----------------------------- HẾT ----------------------------
UBND HUYỆN KIM SƠN
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
-------------------------
HƯỚNG DẪN CHẤM THI CHỌN
HỌC SINH GIỎI MÔN TOÁN 8
Bài
Đáp án
Điểm
1
a) x3(x2 - 7 )2 - 36x = x[( x3 - 7x)2 - 36] 
= x(x3 - 7x - 6)( x3 - 7x + 6 ) = x(x3 - x - 6x - 6)( x3 - x - 6x + 6 )
= x[x(x - 1 )( x + 1) - 6( x+ 1)][ x(x - 1 )( x + 1) - 6( x- 1)]
= x(x + 1 )(x2 - x - 6)(x - 1 )( x2 + x - 6 )
= x(x + 1 )(x2 - 3x + 2x - 6)(x - 1 )( x2 +3x - 2x - 6 )
= x(x + 1 )(x2 - 3x + 2x - 6)(x - 1 )( x2 + 3x - 2x - 6 )
= x(x + 1 )( x - 1 )[(x(x - 3 ) + 2( x - 3 )][(x(x + 3 ) - 2( x + 3 )]
= x(x + 1 )( x - 1 ) (x - 3 )(x + 2 ) ( x - 2 )( x + 3 )
0,25
0,25
0,25
 0,25
0,25
0,25
b) Theo phần a ta có : 
A = n3(n2 - 7 )2 - 36n 
 = n(n + 1 )( n - 1 ) (n - 3 )(n + 2 ) ( n - 2 )( n + 3 )
Đây là tích của 7 số nguyên liên tiếp . Trong 7 số nguyên liên tiếp có :
- Một bội của 2 nên A chia hết cho 2.
- Một bội của 3nên A chia hết cho 3. 
- Một bội của 5 nên A chia hết cho 5.
- Một bội của 7 nên A chia hết cho 7. 
Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau nên: A ( 2.3.5.7 )
Hay A 210.
0,25
0,25
2
a) Với x khác -1 và 1 thì :
 A= = 
= = 
0,25
0,25
b) Tại x = = thì Acó giá trị là 
= 
0,25
0,25
c) Với x khác -1 và 1 thì A< 0 khi và chỉ khi (1) 
Vì với mọi x nên (1) xảy ra khi và chỉ khi 
KL
0,25
0,25
3
Thay 2004 = abc vào M ta có :
0,25
0,25
0,25
0,25
4
1
1
1
D
A
B
C
P
H
I
M
N
Vẽ hình đúng cho phần a
0,25
a) Chứng minh ∆ADM =∆BAN ( cgc )
=> 
Mà ( ∆ADM vuông tại A )
Do đó: => .Hay ∆APM vuông tại P.
0,75
0,25
0,25
b) Tính được : AP = 
 AM = 
 SAPM = 
0,5
0, 5
0,25
c) Gọi I là trung điểm của AD. Nối C với I; CI cắt DM tại H.
Chứng minh tứ giác AICN là hình bình hành 
=> AN // CI mà AN ^ DM nên CI ^ DM
Hay CH là đường cao trong ∆CPD (1)
Vận dụng định lý về đường trung bình trong ∆ADP chứng minh được H là trung điểm của DP => CH là trung tuyến trong ∆CPD (2)
Từ (1) và (2) suy ra ∆CPD cân tại C.
0,5
0,25
0,25
0,25
5
Biến đổi đẳng thức đã cho về dạng ( x + y + 1)( x - y - 1) = 12
Lập luận để có x + y + 1> x - y - 1 và x + y + 1; x - y - 1 là các ước dương của 12 từ đó có các trường hợp : 
x + y + 1
12
6
4
x - y - 1
1
2
3
x
4
y
1
 Mà x; y nguyên dương nên ( x; y) = ( 4; 1)
KL.
0,25 
0,25 
0,25
0,25
*Chú ý: Ở mỗi phần, học sinh làm đúng theo cách khác vẫn cho điểm tối đa.

Tài liệu đính kèm:

  • docHSG Toan 8.doc