Bộ đề thi học sinh giỏi Toán lớp 7 - Số 15

doc 4 trang Người đăng tuanhung Lượt xem 907Lượt tải 0 Download
Bạn đang xem tài liệu "Bộ đề thi học sinh giỏi Toán lớp 7 - Số 15", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bộ đề thi học sinh giỏi Toán lớp 7 - Số 15
Đề số 43:
 đề thi học sinh giỏi
 (Thời gian làm bài 120 phút)
Câu 1: (2 điểm) Tính nhanh:
Câu 2: (2 điểm)
a) Tính giá trị của biểu thức với 
b) Tìm x nguyên để chia hết cho 
Câu 3: ( 2 điểm)
a) Tìm x, y, z biết và 
b) Một ô tô phải đi từ A đến B trong thời gian dự định. Sau khi đi được nửa quãng đường ô tô tăng vận tốc lên 20 % do đó đến B sớm hơn dự định 15 phút. 
Tính thời gian ô tô đi từ A đến B.
Câu 4: (3 điểm) 
Cho tam giác ABC, trung tuyến AM. Trên nửa mặt phẳng chứa đỉnh C bờ là đường thẳng AB dựng đoạn AE vuông góc với AB và AE = AB. Trên nửa mặt phẳng chứa đỉnh B bờ là đường thẳng AC dựng đoạn AF vuông góc với AC và AF = AC. Chứng minh rằng:
a) FB = EC
b) EF = 2 AM
c) AM ^ EF.
Câu 5: (1 điểm)
Chứng tỏ rằng: 
Đề số 44:
 đề thi học sinh giỏi
 (Thời gian làm bài 120 phút)
Câu 1: (2 điểm) 
a) Thực hiện phép tính: 
b) Tính tổng: 
Câu 2: (2 điểm)
1) Tìm x biết: 
2) Trên quãng đường Kép - Bắc giang dài 16,9 km, người thứ nhất đi từ Kép đến Bắc Giang, người thứ hai đi từ Bắc Giang đến Kép. Vận tốc người thứ nhất so với người thứ hai bằng 3: 4. Đến lúc gặp nhau vận tốc người thứ nhất đi so với người thứ hai đi là 2: 5. 
Hỏi khi gặp nhau thì họ cách Bắc Giang bao nhiêu km ?
Câu 3: (2 điểm)
a) Cho đa thức (a, b, c nguyên). 
 	 CMR nếu f(x) chia hết cho 3 với mọi giá trị của x thì a, b, c đều chia hết cho 3.
b) CMR: nếu thì (Giả sử các tỉ số đều có nghĩa).
Câu 4: (3 điểm)
 Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Chứng minh rằng:
 a) AE = AF
b) BE = CF
c) 
Câu 5: (1 điểm) 
Đội văn nghệ khối 7 gồm 10 bạn trong đó có 4 bạn nam, 6 bạn nữ. Để chào mừng ngày 30/4 cần 1 tiết mục văn nghệ có 2 bạn nam, 2 bạn nữ tham gia. 
Hỏi có nhiều nhất bao nhiêu cách lựa chọn để có 4 bạn như trên tham gia.
Đề số 45:
 đề thi học sinh giỏi
 (Thời gian làm bài 120 phút)
Câu 1: (2 điểm) 
a) Tính giá trị của biểu thức: 
b) Chứng tỏ rằng:
Câu 2: (2 điểm)
Cho phân số: (x ẻ Z)
a) Tìm x ẻ Z để C đạt giá trị lớn nhất, tìm giá trị lớn nhất đó.
b) Tìm x ẻ Z để C là số tự nhiên.
Câu 3: (2 điểm)
Cho . Chứng minh rằng: 
Câu 4: (3 điểm)
 Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các DMAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
Câu 5: (1 điểm)
Tìm số nguyên tố p sao cho:
 ; là các số nguyên tố.

Tài liệu đính kèm:

  • docDe_thi_hoc_sinh_gioi_de_15.doc