ĐỊNH LÝ TALET TRONG TAM GIÁC -TÍNH CHẤT ĐƯỜNG PHÂN GIÁC Bài 1: Cho hình thang ABCD (AB // CD). Đường thẳng song song hai đáy cắt cạnh AD tại M, cắt cạnh BC tại N sao cho MD = 3MA. a) Tính tỉ số . b) Cho AB = 8cm, CD = 20cm. Tính MN. Bài 2: Cho tam giác ABC, G là trọng tâm. Qua G vẽ đường thẳng song song với cạnh AC, cắt các cạnh AB, BC lần lượt ở D và E. Tính độ dài đoạn thẳng DE, biết và chu vi tam giác ABC bằng 75cm. Bài 3: Cho tam giác ABC có BC = 15cm. Trên đường cao AH lấy các điểm I, K sao cho AK = KI = IH. Qua I và K vẽ các đường thẳng EF // BC, MN // BC (E, M Î AB; F, N Î AC). a) Tính độ dài các đoạn thẳng MN và EF. b) Tính diện tích tứ giác MNFE, biết rằng diện tích của tam giác ABC là . Bài 4: Cho hình chữ nhật ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H sao cho . a) Chứng minh tứ giác EFGH là hình bình hành. b) Chứng minh hình bình hành EFGH có chu vi không đổi. Bài 5: Cho hình thang ABCD (AB // CD), M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC. a) Chứng minh IK // AB. b) Đường thẳng IK cắt AD, BC lần lượt ở E và F. Chứng minh EI = IK = KF. Bài 6: Cho tam giác ABC cân ở A, BC = 8cm, phân giác của góc B cắt đường cao AH ở K, . a) Tính độ dài AB. b) Đường thẳng vuông góc với BK cắt AH ở E. Tính EH. Bài 7: Cho tam giác ABC có AB = 5cm, AC = 6cm, BC = 7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của hai đường phân giác BD, AE. a) Tính độ dài đoạn thẳng AD. b) Chứng minh OG // AC Bài 8: Cho tam giác ABC vuông ở A, AB = 12cm, BC = 16cm. Đường phân giác góc A cắt BC tại D. a) Tính BC, BD, CD b) Vẽ đường cao AH. Tính AH, HD, AD Bài 9: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N. a) Chứng minh rằng MM // BC. b) Tam giác ABC phải thoả điều kiện gì để có MN = AI? c) Tam giác ABC phải thoả điều kiện gì để có MN ^ AI?
Tài liệu đính kèm: