§Ò sè 1 Thêi gian lµm bµi: 120 phót C©u1: (2 ®iÓm) Cho d·y tØ sè b»ng nhau: T×m gi¸ trÞ biÓu thøc: M= C©u2: (1 ®iÓm) . Cho S =. Chøng minh r»ng S kh«ng ph¶i lµ sè chÝnh ph¬ng. C©u3: (2 ®iÓm) Mét « t« ch¹y tõ A ®Õn B víi vËn tèc 65 km/h, cïng lóc ®ã mét xe m¸y ch¹y tõ B ®Õn A víi vËn tèc 40 km/h. BiÕt kho¶ng c¸ch AB lµ 540 km vµ M lµ trung ®iÓm cña AB. Hái sau khi khëi hµnh bao l©u th× «t« c¸ch M mét kho¶ng b»ng 1/2 kho¶ng c¸ch tõ xe m¸y ®Õn M. C©u4: (2 ®iÓm) Cho tam gi¸c ABC, O lµ ®iÓm n»m trong tam gi¸c. a. Chøng minh r»ng: b. BiÕt vµ tia BO lµ tia ph©n gi¸c cña gãc B. Chøng minh r»ng: Tia CO lµ tia ph©n gi¸c cña gãc C. C©u 5: (1,5®iÓm). Cho 9 ®êng th¼ng trong ®ã kh«ng cã 2 ®êng th¼ng nµo song song. CMR Ýt nhÊt còng cã 2 ®êng th¼ng mµ gãc nhän gi÷a chóng kh«ng nhá h¬n 200. C©u 6: (1,5®iÓm). Khi ch¬i c¸ ngùa, thay v× gieo 1 con sóc s¾c, ta gieo c¶ hai con sóc s¾c cïng mét lóc th× ®iÓm thÊp nhÊt lµ 2, cao nhÊt lµ 12. c¸c ®iÓm kh¸c lµ 3; 4; 5 ;6 11. H·y lËp b¶ng tÇn sè vÒ kh¶ n¨ng xuÊt hiÖn mçi lo¹i ®iÓm nãi trªn? TÝnh tÇn xuÊt cña mçi lo¹i ®iÓm ®ã. ***** HÕt ***** §Ò sè 3 Thêi gian lµm bµi: 120 phót C©u 1 . ( 2®) Cho: . Chøng minh: . C©u 2. (1®). T×m A biÕt r»ng: A = . C©u 3. (2®). T×m ®Ó AÎ Z vµ t×m gi¸ trÞ ®ã. a). A = . b). A = . C©u 4. (2®). T×m x, biÕt: a) = 5 . b). ( x+ 2) 2 = 81. c). 5 x + 5 x+ 2 = 650 C©u 5. (3®). Cho r ABC vu«ng c©n t¹i A, trung tuyÕn AM . E Î BC, BH^ AE, CK ^ AE, (H,K Î AE). Chøng minh r MHK vu«ng c©n. ***** HÕt ***** §Ò sè 4 Thêi gian lµm bµi : 120 phót. C©u 1 : ( 3 ®iÓm). 1. Ba ®êng cao cña tam gi¸c ABC cã ®é dµi lµ 4,12 ,a . BiÕt r»ng a lµ mét sè tù nhiªn. T×m a ? 2. Chøng minh r»ng tõ tØ lÖ thøc ( a,b,c ,d¹ 0, a¹b, c¹d) ta suy ra ®îc c¸c tØ lÖ thøc: a) . b) . C©u 2: ( 1 ®iÓm). T×m sè nguyªn x sao cho: ( x2 –1)( x2 –4)( x2 –7)(x2 –10) < 0. C©u 3: (2 ®iÓm). T×m gi¸ trÞ nhá nhÊt cña: A = | x-a| + | x-b| + |x-c| + | x-d| víi a<b<c<d. C©u 4: ( 2 ®iÓm). Cho h×nh vÏ. a, BiÕt Ax // Cy. so s¸nh gãc ABC víi gãc A+ gãc C. b, gãc ABC = gãc A + gãc C. Chøng minh Ax // Cy. x A B y C C©u 5: (2 ®iÓm) Tõ ®iÓm O tïy ý trong tam gi¸c ABC, kÎ OM, ON , OP lÇn lît vu«ng gãc víi c¸c c¹nh BC, CA, Ab. Chøng minh r»ng: AN2 + BP2 + CM2 = AP2 + BM2 + CN2 ***** HÕt ***** §Ò sè 5 Thêi gian lµm bµi: 120 phót C©u 1(2®): a) TÝnh: A = 1 + b) T×m n Z sao cho : 2n - 3 n + 1 C©u 2 (2®): a) T×m x biÕt: 3x - = 2 b) T×m x, y, z biÕt: 3(x-1) = 2(y-2), 4(y-2) = 3(z-3) vµ 2x+3y-z = 50. C©u 3(2®): Ba ph©n sè cã tæng b»ng , c¸c tö cña chóng tØ lÖ víi 3; 4; 5, c¸c mÉu cña chóng tØ lÖ víi 5; 1; 2. T×m ba ph©n sè ®ã. C©u 4(3®): Cho tam gi¸c ABC c©n ®Ønh A. Trªn c¹nh AB lÊy ®iÓm D, trªn tia ®èi cña tia CA lÊy ®iÓm E sao cho BD = CE. Gäi I lµ trung ®iÓm cña DE. Chøng minh ba ®iÓm B, I, C th¼ng hµng. C©u 5(1®): T×m x, y thuéc Z biÕt: 2x + = ***** HÕt ***** §Ò sè 6 Thêi gian lµm bµi: 120’. C©u 1: TÝnh : a) A = . b) B = 1+ C©u 2: a) So s¸nh: vµ . b) Chøng minh r»ng: . C©u 3: T×m sè cã 3 ch÷ sè biÕt r»ng sè ®ã lµ béi cña 18 vµ c¸c ch÷ sè cña nã tØ lÖ theo 1:2:3 C©u 4 Cho tam gi¸c ABC cã gãc B vµ gãc C nhá h¬n 900 . VÏ ra phÝa ngoµi tam gi¸c Êy c¸c tam gi¸c vu«ng c©n ABD vµ ACE ( trong ®ã gãc ABD vµ gãc ACE ®Òu b»ng 900 ), vÏ DI vµ EK cïng vu«ng gãc víi ®êng th¼ng BC. Chøng minh r»ng: a. BI=CK; EK = HC; b. BC = DI + EK. C©u 5: T×m gi¸ trÞ nhá nhÊt cña biÓu thøc : A = ***** HÕt ***** §Ò sè 7 Thêi gian lµm bµi: 120 phót C©u 1: (1,5 ®)T×m x biÕt: a, ++++=0 b, C©u2:(3 ®iÓm) a, TÝnh tæng: b, CMR: c, Chøng minh r»ng mäi sè nguyªn d¬ng n th×: 3n+2 – 2n+2 +3n – 2n chia hÕt cho 10 C©u3: (2 ®iÓm) §é dµi ba c¹nh cña mét tam gi¸c tØ lÖ víi 2;3;4. Hái ba chiÒu cao t¬ng øng ba c¹nh ®ã tØ lÖ víi sè nµo? C©u 4: (2,5®iÓm) Cho tam gi¸c ABC cã gãchai ®êng ph©n gi¸c AP vµ CQ cña tam gi¸c c¾t nhau t¹i I. a, TÝnh gãc AIC b, CM : IP = IQ C©u5: (1 ®iÓm) Cho . T×m sè nguyªn n ®Ó B cã gi¸ trÞ lín nhÊt. ***** HÕt ***** §Ò sè 8 Thêi gian : 120 phút C©u 1 : (3®) T×m sè h÷u tØ x, biÕt : a) = - 243 . b) c) x - 2 = 0 (x) C©u 2 : (3®) a, T×m sè nguyªn x vµ y biÕt : b, T×m sè nguyªn x ®Ó A cã gi¸ trÞ lµ 1 sè nguyªn biÕt : A = (x) C©u 3 : (1®) T×m x biÕt : 2. - 2x = 14 C©u 4 : (3®) a, Cho ABC cã c¸c gãc A, B , C tØ lÖ víi 7; 5; 3 . C¸c gãc ngoµi t¬ng øng tØ lÖ víi c¸c sè nµo . b, Cho ABC c©n t¹i A vµ ¢ < 900 . KÎ BD vu«ng gãc víi AC . Trªn c¹nh AB lÊy ®iÓm E sao cho : AE = AD . Chøng minh : 1) DE // BC 2) CE vu«ng gãc víi AB . ***** HÕt ***** Đề số 9 Thêi gian lµm bµi: 120 phót Bµi1( 3 ®iÓm) a, TÝnh: A = b, TÝnh nhanh: (18.123 + 9.436.2 + 3.5310.6) : (1 + 4 +7 ++ 100 – 410) Bµi 2: ( 2®iÓm). T×m 3 sè nguyªn d¬ng sao cho tæng c¸c nghÞch ®¶o cña chóng b»ng 2. Bµi 3: (2 ®iÓm). CÇn bao nhiªu ch÷ sè ®Ó ®¸nh sè trang mét cuèn s¸ch dµy 234 trang. Bµi 4: ( 3 ®iÓm) Cho ABC vu«ng t¹i B, ®êng cao BE T×m sè ®o c¸c gãc nhän cña tam gi¸c , biÕt EC – EA = AB. === = = = = HÕt = = = = === §Ò sè 10 Thêi gian lµm bµi 120 phót Bµi 1(2 ®iÓm). Cho a.ViÕt biÓu thøc A díi d¹ng kh«ng cã dÊu gi¸ trÞ tuyÖt ®èi. b.T×m gi¸ trÞ nhá nhÊt cña A. Bµi 2 ( 2 ®iÓm) a.Chøng minh r»ng : . b.T×m sè nguyªn a ®Ó : lµ sè nguyªn. Bµi 3(2,5 ®iÓm). T×m n lµ sè tù nhiªn ®Ó : Bµi 4(2 ®iÓm) Cho gãc xOy cè ®Þnh. Trªn tia Ox lÊy M, Oy lÊy N sao cho OM + ON = m kh«ng ®æi. Chøng minh : §êng trung trùc cña MN ®i qua mét ®iÓm cè ®Þnh. Bµi 5(1,5 ®iÓm). T×m ®a thøc bËc hai sao cho : . ¸p dông tÝnh tæng : S = 1 + 2 + 3 + + n. ***** HÕt ***** §Ò sè 11 Thêi gian lµm bµi: 120 phót C©u 1: (2®) Rót gän A= C©u 2 (2®) Ba líp 7A,7B,7C cã 94 häc sinh tham gia trång c©y. Mçi häc sinh líp 7A trång ®îc 3 c©y, Mçi häc sinh líp 7B trång ®îc 4 c©y, Mçi häc sinh líp 7C trång ®îc 5 c©y,. Hái mçi líp cã bao nhiªu häc sinh. BiÕt r»ng sè c©y mçi líp trång ®îc ®Òu nh nhau. C©u 3: (1,5®) Chøng minh r»ng lµ mét sè tù nhiªn. C©u 4 : (3®) Cho gãc xAy = 600 vÏ tia ph©n gi¸c Az cña gãc ®ã . Tõ mét ®iÓm B trªn Ax vÏ ®êng th¼ng song song víi víi Ay c¾t Az t¹i C. vÏ Bh ^ Ay,CM ^Ay, BK ^ AC. Chøng minh r»ng: a, K lµ trung ®iÓm cña AC. b, BH = c, ®Òu C©u 5 (1,5 ®) Trong mét kú thi häc sinh giái cÊp HuyÖn, bèn b¹n Nam, B¾c, T©y, §«ng ®o¹t 4 gi¶i 1,2,3,4 . BiÕt r»ng mçi c©u trong 3 c©u díi ®©y ®óng mét nöa vµ sai 1 nöa: a, T©y ®¹t gi¶i 1, B¾c ®¹t gi¶i 2. b, T©y ®¹t gi¶i 2, §«ng ®¹t gi¶i 3. c, Nam ®¹t gi¶i 2, §«ng ®¹t gi¶i 4. Em h·y x¸c ®Þnh thø tù ®óng cña gi¶i cho c¸c b¹n. ***** HÕt ***** §Ò sè 12 Thêi gian lµm bµi 120 phót C©u 1: (2®) T×m x, biÕt: a) b) c) d) C©u 2: (2®) a) TÝnh tæng S = 1+52+ 54+...+ 5200 b) So s¸nh 230 + 330 + 430 vµ 3.2410 C©u 3: (2®) Cho tam gi¸c ABC cã gãc B b»ng 600. Hai tia ph©n gi¸c AM vµ CN cña tam gi¸c ABC c¾t nhau t¹i I. a) TÝnh gãc AIC b) Chøng minh IM = IN C©u 4: (3®) Cho M,N lÇn lît lµ trung ®iÓm cña c¸c c¹nh AB vµ Ac cña tam gi¸c ABC. C¸c ®êng ph©n gi¸c vµ ph©n gi¸c ngoµi cña tam gi¸c kÎ tõ B c¾t ®êng th¼ng MN lÇn lît t¹i D vµ E c¸c tia AD vµ AE c¾t ®êng th¼ng BC theo thø tù t¹i P vµ Q. Chøng minh: a) BD b) B lµ trung ®iÓm cña PQ c) AB = DE C©u 5: (1®) Víi gi¸ trÞ nguyªn nµo cña x th× biÓu thøc A= Cã gi¸ trÞ lín nhÊt? T×m gi¸ trÞ ®ã. ***** HÕt ***** §Ò sè 13 Thêi gian : 120 phút C©u 1: ( 1,5 ®iÓm) T×m x, biÕt: a. - x = 15. b. - x > 1. c. 5. C©u2: ( 2 ®iÓm) a. TÝnh tæng: A= (- 7) + (-7)2 + + (- 7)2006 + (- 7)2007. Chøng minh r»ng: A chia hÕt cho 43. b. Chøng minh r»ng ®iÒu kiÖn cÇn vµ ®ñ®Ó m2 + m.n + n2 chia hÕt cho 9 lµ: m, n chia hÕt cho 3. C©u 3: ( 23,5 ®iÓm) §é dµi c¸c c¹nh cña mét tam gi¸c tØ lÖ víi nhau nh thÕ nµo,biÕt nÕu céng lÇn lît ®é dµi tõng hai ®êng cao cña tam gi¸c ®ã th× c¸c tæng nµy tû lÖ theo 3:4:5. C©u 4: ( 3 ®iÓm ) Cho tam gi¸c ABC c©n t¹i A. D lµ mét ®iÓm n»m trong tam gi¸c, biÕt > . Chøng minh r»ng: DB < DC. C©u 5: ( 1 ®iÓm ) T×m GTLN cña biÓu thøc: A = - . §Ò sè 14 Thêi gian : 120 phút C©u 1 (2 ®iÓm): T×m x, biÕt : a. +5x = 4x-10 b. 3+ > 13 C©u 2: (3 ®iÓm ) a. T×m mét sè cã 3 ch÷ sè biÕt r»ng sè ®ã chia hÕt cho 18 vµ c¸c ch÷ sè cña nã tû lÖ víi 1, 2, 3. b. Chøng minh r»ng: Tæng A=7 +72+73+74+...+74n chia hÕt cho 400 (nN). C©u 3 : (1®iÓm )cho h×nh vÏ , biÕt ++ = 1800 chøng minh Ax// By. A x C B y C©u 4 (3 ®iÓm ) Cho tam gi¸c c©n ABC, cã =1000. KÎ ph©n gi¸c trong cña gãc CAB c¾t AB t¹i D. Chøng minh r»ng: AD + DC =AB C©u 5 (1 ®iÓm ) TÝnh tæng. S = (-3)0 + (-3)1+ (-3)2 + .....+ (-3)2004. ***** HÕt ***** §Ò sè 15 Thêi gian lµm bµi: 120 phó Bµi 1: (2,5®) Thùc hiÖn phÐp tÝnh sau mét c¸ch hîp lÝ: Bµi 2: (2,5®) TÝnh gi¸ trÞ nhá nhÊt cña biÓu thøc: A = Bµi 3: (4®) Cho tam gi¸c ABC. Gäi H, G,O lÇn lît lµ trùc t©m , träng t©m vµ giao ®iÓm cña 3 ®êng trung trùc trong tam gi¸c. Chøng minh r»ng: a. AH b»ng 2 lÇn kho¶ng c¸ch tõ O ®Õn BC b. Ba ®iÓm H,G,O th¼ng hµng vµ GH = 2 GO Bµi 4: (1 ®) T×m tæng c¸c hÖ sè cña ®a thøc nhËn ®îc sau khi bá dÊu ngoÆc trong biÓu thøc (3-4x+x2)2006.(3+ 4x + x2)2007. ***** HÕt ***** §Ò 16 Thêi gian lµm bµi: 120 phót C©u 1(3®): Chøng minh r»ng A = 22011969 + 11969220 + 69220119 chia hÕt cho 102 C©u 2(3®): T×m x, biÕt: a. ; b. C©u 3(3®): Cho tam gi¸c ABC. Gäi M, N, P theo thø tù lµ trung ®iÓm cña BC, CA, AB. C¸c ®êng trung trùc cña tam gi¸c gÆp nhau tai 0. C¸c ®êng cao AD, BE, CF gÆp nhau t¹i H. Gäi I, K, R theo thø tù lµ trung ®iÓm cña HA, HB, HC. a) C/m H0 vµ IM c¾t nhau t¹i Q lµ trung ®iÓm cña mçi ®o¹n. b) C/m QI = QM = QD = 0A/2 c) H·y suy ra c¸c kÕt qu¶ t¬ng tù nh kÕt qu¶ ë c©u b. C©u 4(1®): T×m gi¸ trÞ cña x ®Ó biÓu thøc A = 10 - 3|x-5| ®¹t gi¸ trÞ lín nhÊt. ***** HÕt ***** §Ò 17 Thêi gian: 120 phót Bµi 1: (2®) Cho biÓu thøc A = a) TÝnh gi¸ trÞ cña A t¹i x = b) T×m gi¸ trÞ cña x ®Ó A = - 1 c) T×m gi¸ trÞ nguyªn cña x ®Ó A nhËn gi¸ trÞ nguyªn. Bµi 2. (3®) a) T×m x biÕt: b) TÝnh tæng M = 1 + (- 2) + (- 2)2 + +(- 2)2006 c) Cho ®a thøc: f(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – x4 + 1 – 4x3. Chøng tá r»ng ®a thøc trªn kh«ng cã nghiÖm Bµi 3.(1®) Hái tam gi¸c ABC lµ tam gi¸c g× biÕt r»ng c¸c gãc cña tam gi¸c tØ lÖ víi 1, 2, 3. Bµi 4.(3®) Cho tam gi¸c ABC cã gãc B b»ng 600. Hai tia ph©n gi¸c AM vµ CN cña tam gi¸c ABC c¾t nhau t¹i I. a) TÝnh gãc AIC b) Chøng minh IM = IN §Ò 18 Thêi gian: 120 phót C©u 1: 1.TÝnh: a. b. 2. Rót gän: A = 3. BiÓu diÔn sè thËp ph©n díi d¹ng ph©n sè vµ ngîc l¹i: a. b. c. 0, (21) d. 0,5(16) C©u 2: Trong mét ®ît lao ®éng, ba khèi 7, 8, 9 chuyªn chë ®îc 912 m3 ®Êt. Trung b×nh mçi häc sinh khèi 7, 8, 9 theo thø tù lµm ®îc 1,2 ; 1,4 ; 1,6 m3 ®Êt. Sè häc sinh khèi 7, 8 tØ lÖ víi 1 vµ 3. Khèi 8 vµ 9 tØ lÖ víi 4 vµ 5. TÝnh sè häc sinh mçi khèi. C©u 3: a.T×m gi¸ trÞ lín nhÊt cña biÓu thøc: A = b.T×m gi¸ trÞ nhá nhÊt cña biÓu thøc: B = (x+1)2 + (y + 3)2 + 1 C©u 4: Cho tam gi¸c ABC c©n (CA = CB) vµ ÐC = 800. Trong tam gi¸c sao cho vµ .TÝnh . C©u 5: Chøng minh r»ng : nÕu (a,b) = 1 th× (a2,a+b) = 1. ***** HÕt ***** §Ò19 Thêi gian: 120 phót. C©u I: (2®) 1) Cho vµ 5a - 3b - 4 c = 46 . X¸c ®Þnh a, b, c 2) Cho tØ lÖ thøc : . Chøng minh : . Víi ®iÒu kiÖn mÉu thøc x¸c ®Þnh. C©u II : TÝnh : (2®) 1) A = 2) B = C©u III : (1,5 ®) §æi thµnh ph©n sè c¸c sè thËp ph©n sau : a. 0,2(3) ; b. 1,12(32). C©u IV : (1.5®) X¸c ®Þnh c¸c ®a thøc bËc 3 biÕt : P(0) = 10; P(1) = 12; P(2) = 4 ; p(3) = 1 C©u V : (3®) Cho tam gi¸c ABC cã 3 gãc nhän. Dùng ra phÝa ngoµi 2 tam gi¸c vu«ng c©n ®Ønh A lµ ABD vµ ACE . Gäi M;N;P lÇn lît lµ trung ®iÓm cña BC; BD;CE . a. Chøng minh : BE = CD vµ BE ^ víi CD b. Chøng minh tam gi¸c MNP vu«ng c©n ***** HÕt §Ò 20 Thêi gian lµm bµi: 120 phót Bµi 1 (1,5®): Thùc hiÖn phÐp tÝnh: a) A = b) B = 1 + 22 + 24 + ... + 2100 Bµi 2 (1,5®): a) So s¸nh: 230 + 330 + 430 vµ 3.2410 b) So s¸nh: 4 + vµ + Bµi 3 (2®): Ba m¸y xay xay ®îc 359 tÊn thãc. Sè ngµy lµm viÖc cña c¸c m¸y tØ lÖ víi 3:4:5, sè giê lµm viÖc cña c¸c m¸y tØ lÖ víi 6, 7, 8, c«ng suÊt c¸c m¸y tØ lÖ nghÞc víi 5,4,3. Hái mçi m¸y xay ®îc bao nhiªu tÊn thãc. Bµi 4 (1®): T×m x, y biÕt: a) £ 3 b) Bµi 5 ( 3®): Cho ABC cã c¸c gãc nhá h¬n 1200. VÏ ë phÝa ngoµi tam gi¸c ABC c¸c tam gi¸c ®Òu ABD, ACE. Gäi M lµ giao ®iÓm cña DC vµ BE. Chøng minh r»ng: a) b) Bµi 6 (1®): Cho hµm sè f(x) x¸c ®Þnh víi mäi x thuéc R. BiÕt r»ng víi mäi x ta ®Òu cã: . TÝnh f(2). ***** HÕt ***** §Ò 21 Thêi gian lµm bµi: 120 phót C©u 1 (2®) T×m x, y, z Z, biÕt a. = 3 - x b. c. 2x = 3y; 5x = 7z vµ 3x - 7y + 5z = 30 C©u 2 (2®) a. Cho A =. H·y so s¸nh A víi b. Cho B = . T×m x Z ®Ó B cã gi¸ trÞ lµ mét sè nguyªn d¬ng C©u 3 (2®) Mét ngêi ®i tõ A ®Õn B víi vËn tèc 4km/h vµ dù ®Þnh ®Õn B lóc 11 giê 45 phót. Sau khi ®i ®îc qu·ng ®êng th× ngêi ®ã ®i víi vËn tèc 3km/h nªn ®Õn B lóc 12 giê tra. TÝnh qu·ng ®êngAB vµ ngêi ®ã khëi hµnh lóc mÊy giê? C©u 4 (3®) Cho cã > 900. Gäi I lµ trung ®iÓm cña c¹nh AC. Trªn tia ®èi cña tia IB lÊy ®iÓm D sao cho IB = ID. Nèi c víi D. a. Chøng minh b. Gäi M lµ trung ®iÓm cña BC; N lµ trung ®iÓm cña CD. Chøng minh r»ng I lµ trung ®iÓm cña MN c. Chøng minh AIB d. T×m ®iÒu kiÖn cña ®Ó C©u 5 (1®) T×m gi¸ trÞ nhá nhÊt cña biÓu thøc: P = . Khi ®ã x nhËn gi¸ trÞ nguyªn nµo? ***** HÕt ***** §Ò 22 Thêi gian lµm bµi: 120 phót Bµi 1: (2,5®) a. T×m x biÕt : +5x = 9 b. Thùc hiÖn phÐp tÝnh : (1 +2 +3 + ...+ 90). ( 12.34 – 6.68) :; c. So s¸nh A = 20 +21 +22 +23+ 24 +...+2100 vµ B = 2101 . Bµi 2 :(1,5®) T×m tØ lÖ ba c¹nh cña mét tam gi¸c biÕt r»ng nÕu céng lÇn lît ®é dµi tõng hai ®êng cao cña tam gi¸c ®ã th× tØ lÖ c¸c kÕt qu¶ lµ :5 : 7 : 8. Bµi 3 :(2®) Cho biÓu thøc A = . a. TÝnh gi¸ trÞ cña A t¹i x = vµ x = . b. T×m gi¸ trÞ cña x ®Ó A =5. Bµi 4 :(3®) Cho tam gi¸c ABC vu«ng t¹i C. Tõ A, B kÎ hai ph©n gi¸c c¾t AC ë E, c¾t BC t¹i D. Tõ D, E h¹ ®êng vu«ng gãc xuèng AB c¾t AB ë M vµ N. TÝnh gãc ? Bµi 5 : (1®) Víi gi¸ trÞ nµo cña x th× biÓu thøc : P = -x2 – 8x +5 . Cã gi¸ trÞ lín nhÊt . T×m gi¸ trÞ lín nhÊt ®ã ? ***** HÕt ***** §Ò 23 Thêi gian: 120 phót C©u 1: (3®) a. TÝnh A = b. T×m sè nguyªn n, biÕt: 2-1.2n + 4.2n = 9.25 c. Chøng minh víi mäi n nguyªn d¬ng th×: 3n+3-2n+2+3n-2n chia hÕt cho 10 C©u 2: ((3®) a. 130 häc sinh thuéc 3 líp 7A, 7B, 7C cña mét trêng cïng tham gia trång c©y. Mçi häc sinh cña líp 7A, 7B, 7C theo thø tù trång ®îc 2c©y, 3 c©y, 4 c©y. Hái mçi líp cã bao nhiªu häc sinh tham gia trång c©y? BiÕt sè c©y trång ®îc cña 3 líp b»ng nhau. b. Chøng minh r»ng: - 0,7 ( 4343 - 1717 ) lµ mét sè nguyªn C©u 3: (4® ) Cho tam gi¸c c©n ABC, AB=AC. Trªn c¹nh BC lÊy ®iÓm D. Trªn Tia cña tia BC lÊy ®iÓm E sao cho BD=BE. C¸c ®êng th¼ng vu«ng gãc víi BC kÎ tõ D vµ E c¾t AB vµ AC lÇn lît ë M vµ N. Chøng minh: a. DM= ED b. §êng th¼ng BC c¾t MN t¹i ®iÓm I lµ trung ®iÓm cña MN. c. §êng th¼ng vu«ng gãc víi MN t¹i I lu«n lu«n ®i qua mét ®iÓm cè ®Þnh khi D thay ®æi trªn BC. ***** HÕt ***** §Ò 24 Thêi gian: 120 phót C©u 1: (2 ®iÓm). Rót gän biÓu thøc a. b. c. C©u 2: T×m x biÕt: a. - x = 7 b. - 4x < 9 C©u 3: (2®) T×m mét sè cã 3 ch÷ sè biÕt r»ng sè ®ã chia hÕt cho 18 vµ c¸c ch÷ sè cña nã tû lÖ víi 3 sè 1; 2; 3. C©u 4: (3,5®). Cho D ABC, trªn c¹nh AB lÊy c¸c ®iÓm D vµ E. Sao cho AD = BE. Qua D vµ E vÏ c¸c ®êng song song víi BC, chóng c¾t AC theo thø tù ë M vµ N. Chøng minh r»ng DM + EN = BC. §Ò 25 Thêi gian lµm bµi: 120 phót (kh«ng kÓ thêi gian giao ®Ò) Bµi 1:(1®iÓm) H·y so s¸nh A vµ B, biÕt: A=. Bµi 2:(2®iÓm) Thùc hiÖn phÐp tÝnh: A= Bµi 3:(2®iÓm) T×m c¸c sè x, y nguyªn biÕt r»ng: Bµi 4:(2 ®iÓm) Cho a, b, c lµ ba c¹nh cña mét tam gi¸c. Chøng minh r»ng: 2(ab + bc + ca) > a2 + b2 + c2. Bµi 5:(3 ®iÓm) Cho tam gi¸c ABC cã. Gäi K lµ ®iÓm trong tam gi¸c sao cho a. Chøng minh BA = BK. b. TÝnh sè ®o gãc BAK. §Ò thi 26 Thêi gian lµm bµi: 120 phót C©u 1. Víi mäi sè tù nhiªn n 2 h·y so s¸nh: a. A= víi 1 . b. B = víi 1/2 C©u 2: T×m phÇn nguyªn cña , víi C©u 3: T×m tØ lÖ 3 c¹nh cña mét tam gi¸c, biÕt r»ng céng lÇn lît ®é dµi hai ®êng cao cña tam gi¸c ®ã th× tØ lÖ c¸c kÕt qu¶ lµ 5: 7 : 8. C©u 4: Cho gãc xoy , trªn hai c¹nh ox vµ oy lÇn lît lÊy c¸c ®iÓm A vµ B ®Ó cho AB cã ®é dµi nhá nhÊt. C©u 5: Chøng minh r»ng nÕu a, b, c vµ lµ c¸c sè h÷u tØ. §Ò 27 Bµi 1. (4 ®iÓm) Chøng minh r»ng 76 + 75 – 74 chia hÕt cho 55 TÝnh A = 1 + 5 + 52 + 53 + . . . + 549 + 55 0 Bµi 2. (4 ®iÓm) T×m c¸c sè a, b, c biÕt r»ng : vµ a + 2b – 3c = -20 Cã 16 tê giÊy b¹c lo¹i 20 000®, 50 000®, 100 000®. TrÞ gi¸ mçi lo¹i tiÒn trªn ®Òu b»ng nhau. Hái mçi lo¹i cã mÊy tê? Bµi 3. (4 ®iÓm) Cho hai ®a thøc f(x) = x5 – 3x2 + 7x4 – 9x3 + x2 - x g(x) = 5x4 – x5 + x2 – 2x3 + 3x2 - TÝnh f(x) + g(x) vµ f(x) – g(x). TÝnh gi¸ trÞ cña ®a thøc sau: A = x2 + x4 + x6 + x8 + + x100 t¹i x = -1. Bµi 4. (4 ®iÓm) Cho tam gi¸c ABC cã gãc A b»ng 900, trªn c¹nh BC lÊy ®iÓm E sao cho BE = BA. Tia ph©n gi¸c cña gãc B c¾t AC ë D. So s¸nh c¸c ®é dµi DA vµ DE. TÝnh sè ®o gãc BED. Bµi 5. (4 ®iÓm) Cho tam gi¸c ABC, ®êng trung tuyÕn AD. KÎ ®êng trung tuyÕn BE c¾t AD ë G. Gäi I, K theo thø tù lµ trung ®iÓm cña GA, GB. Chøng minh r»ng: IK// DE, IK = DE. AG = AD. §Ò 28 Bài 1: (3 điểm): Tính Bài 2: (4 điểm): Cho chứng minh rằng: a) b) Bài 3:(4 điểm) Tìm biết: a) b) Bài 4: (3 điểm) Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây Bài 5: (4 điểm) Cho tam giác ABC cân tại A có , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: Tia AD là phân giác của góc BAC AM = BC Bài 6: (2 điểm): Tìm biết: §Ò 29 Bài 1:(4 điểm) a) Thực hiện phép tính: b) Chứng minh rằng : Với mọi số nguyên dương n thì : chia hết cho 10 Bài 2:(4 điểm) Tìm x biết: a. b. Bài 3: (4 điểm) Số A được chia thành 3 số tỉ lệ theo . Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. Cho . Chứng minh rằng: Bài 4: (4 điểm) Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ . Biết = 50o ; =25o . Tính và Bài 5: (4 điểm) Cho tam giác ABC cân tại A có , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: Tia AD là phân giác của góc BAC AM = BC §Ò 29 Bài 1:(4 điểm) a) Thực hiện phép tính: b) Chứng minh rằng : Với mọi số nguyên dương n thì : chia hết cho 10 Bài 2:(4 điểm) Tìm x biết: a. b. Bài 3: (4 điểm) Số A được chia thành 3 số tỉ lệ theo . Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. Cho . Chứng minh rằng: Bài 4: (4 điểm) Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ . Biết = 50o ; =25o . Tính và Bài 5: (4 điểm) Cho tam giác ABC cân tại A có , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: Tia AD là phân giác của góc BAC AM = BC
Tài liệu đính kèm: