«n tËp ®¹i sè 7 – ch¬ng iv §Ò 1 I. Tr¾c nghiÖm (2 ®iÓm) H·y khoanh trßn vµo chữ c¸i đứng trước c©u trả lời đóng : C©u 1: Gi¸ trÞ cña biÓu thøc t¹i x = - 1 lµ: A. 5 B. - 5 C. 1 D. - 3 C©u 2: Đơn thức nào sau đây đồng dạng với đơn thức - xy2 : A . - 2yx(-y) B -x2y C . x2y2 D. 2(xy)2 C©u 3: NghiÖm cña ®a thøc 2x2 - x - 1 lµ: A. - 1 B. C. 2 D. C©u 4: Đơn thức 3x2y4z có bậc là : A. 5 B. 6 C. 8 D. 7 II. PhÇn tù luËn ( 8®iÓm) Bµi 1( 1,5 ®iÓm): Cho hai ®¬n thøc: vµ a) Nh©n hai ®¬n thøc, t×m bËc vµ hÖ sè cña ®¬n thøc kÕt qu¶ ®ã. b) TÝnh gi¸ trÞ cña ®¬n thøc t¹i x = 1; y = - 1; z = 2 Bµi 2 (1,5 ®iÓm ): Sắp xếp các đơn thức sau thành từng nhóm các đơn thức đồng dạng : 5xy2 ; -2x2y; 7x2y2 ; - x2y; 4 x2y2 ; x2y; x2y2; -2 xy2 Bµi 3 ( 1 ®iÓm).T×m nghiÖm cña ®a thøc a) x + 5 ; b) x2 – 2x ; Bµi 4 ( 3 ®iÓm ): Cho hai đa thức : M(x) = – 4x + 3x4 + 1 – 2x3 + 5x2 và N(x) = - 3x4 + 7x + 2x3 + 5 –3x2 a/ S¾p xÕp c¸c ®a thøc trªn theo luü thõa gi¶m cña biÕn b/ Tính : M(x) + N(x) vµ M(x) - N(x) Bµi 5 ( 1 ®iÓm ): Cho . TÝnh gi¸ trÞ cña biÓu thøc . §¸p ¸n ®Ò 1 kiÓm tra ®¹i sè7 tiÕt 66 - ch¬ng 4 PhÇn I. Tr¾c nghiÖm ( 3 ®iÓm ) C©u 1 2 3 4 ĐÒ 1 C A B D ĐÒ II C B C A ( Mçi lùa chän ®¸p ¸n ®óng ®îc 0,5 ®iÓm ) PhÇn II.Tù luËn: (8 ®iÓm ) Bµi §¸p ¸n §iÓm Bµi 1 ( 1,5 ®iÓm) a) A . B = §¬n thøc trªn cã bËc lµ 14 vµ hÖ sè cña ®¬n thøc ®ã lµ -6. b) TÝnh gi¸ trÞ cña ®¬n thøc t¹i x = 1; y = -1; z = 2 Thay x = 1; y = -1; z = 2 vµo ®¬n thøc ta cã: - 6.17 . (-1)4 . 23 = - 48. 0,5 0,5 0,5 Bµi 2 ( 1,5 ®iÓm) Các nhóm đơn thức đồng dạng là: 5xy2; -2 xy2 -2x2y; - x2y; x2y 7x2y2; 4 x2y2 ; x2y2 0,5 0,5 0,5 Bµi 3 ( 1 ®iÓm) a) x + 5 = 0 => x = - 5 . VËy ®a thøc x + 5 cã nghiÖm lµ x = - 5 b) x2 – 2x = 0 => x(x – 2) = 0 nªn x = 0 hoÆc x – 2 = 0 VËy ®a thøc x2 – 2x cã hai nghiÖm lµ x1 = 0 vµ x2 = 2. 0,5 0,5 Bµi 4 ( 3 ®iÓm) a) Mçi s¾p xÕp ®óng ®îc 0,5 ®iÓm b) * M(x) + N(x) = (3x4 – 2x3 + 5x2 – 4x + 1) +(-3x4 + 2x3 –3x2 + 7x + 5) = (3x4 - 3x4) + (– 2x3 + 2x3) +(5x2–3x2) +(-4x + 7x ) + (1 + 5) = 2x2 + 3x + 6 1 1 * M(x) - N(x) = (3x4 – 2x3 + 5x2 – 4x + 1) - (-3x4 + 2x3 –3x2 + 7x + 5) = (3x4 + 3x4) + (– 2x3 - 2x3) +(5x2 + 3x2) +(-4x - 7x ) + (1 - 5) = 6x4 - 4x3 + 8x2 - 11x – 4 1 Bµi 5 ( 1 ®iÓm) 1 §Ò 2 I. Tr¾c nhiÖm (3,0 ®iÓm) H·y khoanh trßn vµo chữ c¸i đứng trước c©u trả lời đóng : C©u 1: Gi¸ trị của biểu thức tại x = 2; y = -1 lµ: A. 12 B. 1 C. 7 D. 10 C©u 2: Kết quả của lµ : A. B. C. D. C©u 3: Kết quả của phÐp tÝnh lµ : A. B. C. 4x6y4 D. - 4x6y4 C©u 4: Bậc của đa thức 5x4y +6x2y2 + 5y8 + 1 lµ: A. 5 B. 6 C. 8 D. 4 C©u 5: Số nµo sau đ©y lµ nghiệm của đa thức P(x) = x + 5 ? A. x = 5 B. x = 1 C. x = - 5 D. x = 0 C©u 6: Trong c¸c khẳng định sau đ©y khẳng định nµo đóng? khẳng định nµo sai? C¸c khẳng định Đ (đóng ) hay S ( sai ) a) Hai đơn thức đồng dạng th× cã cïng bậc. b) Đa thức g(x) = x2 + 1 cã nghiệm lµ x = -1 II. PhÇn tù luËn( 7®iÓm) Bµi 1( 1 ®iÓm). TÝnh: f(x) - g(x) biÕt : f(x) = x3+ 2x2 + 1 ; g(x) = x3 - x2 - 3x - 2 Bµi 2 (2 ®iÓm ). a) TÝnh gi¸ trÞ cña ®a thøc f(x) = x2 - 3x + 2 t¹i x=0 ; x = 1 vµ x = - 2. b) Trong ba gi¸ trÞ cña x ë trªn gi¸ trÞ nµo lµ nghiÖm cña ®a thøc f(x), gi¸ trÞ nµo kh«ng lµ nghiÖm cña f(x)? V× sao? Bµi 3 ( 1 ®iÓm).T×m nghiÖm cña ®a thøc bËc nhÊt: h(x) = 2x - 6 Bµi 4 ( 2 ®iÓm ).Rót gän : a) b) Bµi 5 ( 1 ®iÓm ).TÝnh gi¸ trÞ cña biÓu thøc M = (a2 + ab)b. BiÕt a + b + c = 0 vµ abc = -10. §¸p ¸n ®Ò kiÓm tra ®¹i sè7 ch¬ng 4 PhÇn I. Tr¾c nghiÖm ( 3 ®iÓm ) C©u 1 2 3 4 5 ĐÒ 1 C D B C C ĐÒ II D C A A B ( Mçi bµi lùa chän ®¸p ¸n ®óng ®îc 0,5 ®iÓm ) C©u 6: Mçi bµi lùa chän ®¸p ¸n ®óng ®îc 0,25 ®iÓm §ª I a) § b) S §Ò 2 a) S b) S PhÇn II.Tù luËn: (7 ®iÓm ) Bµi 1 : TÝnh ®îc f(x) - g(x) = 3x2 + 3x +3 1 ® Bµi 2: TÝnh gi¸ trÞ cña ®a thøc a) f( 0 ) = 3. 02- 3.0 + 2 = 2 0,5 ® f(1) = 12 - 3.1 + 2 = 0 0,5 ® f( - 2) = ( -2)2 - 3( -2) + 2 = 4 + 6 + 2 = 12 0,5 ® b) Gi¸ trÞ x = 1 lµ nghiÖm cña ®a thøc f(x) v× f(1) = 0 0,25 ® Gi¸ trÞ x = 0 vµ x=2 kh«ng lµ nghiÖm cña f(x) v× f( 0 ) ≠ 0 vµ f(2) ≠ 0 0,25 ® Bµi 3: h(x) = 0 à 2x - 6 = 0 à 2x = 6 à x = 6:2 = 3 VËy x = 3 lµ nghiÖm cña h( x ) 1 ® Bµi 4 : Rót gän : a) = ( 7 - 4 - 2) xy = xy 1 ® b) = = ...= 1 ® Bµi 5 : V× a + b + c = 0 à a +b = - c vµ abc = -10 ( GT) M = (a2 + ab)b = a(a+b)b = a(-c)b = - abc = - (-10) = 10 à 1® §Ò 3
Tài liệu đính kèm: