Đề ôn tập thi vào lớp 10 môn Toán - Đề số 3

doc 5 trang Người đăng phongnguyet00 Lượt xem 853Lượt tải 0 Download
Bạn đang xem tài liệu "Đề ôn tập thi vào lớp 10 môn Toán - Đề số 3", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề ôn tập thi vào lớp 10 môn Toán - Đề số 3
ĐỀ ÔN TẬP THI VÀO 10 – Số 3.
Bài 1. Cho biểu thức 
Tìm điều kiện xác định và rút gọn biểu thức P.
Tìm x, để P < 0.
Bài 2. Một mảnh vườn hình chử nhật có chiều dài hơn chiều rộng 5m. Nếu giảm chiều dài 3m và tăng chiều rộng 4m thì diện tích mảnh vườn tăng thêm 20m2. Tính diện tích của mảnh vườn hình chử nhật ban đầu.
Bài 3. Cho phương trình: x2 – 2(m + 2)x + m2 – 8 = 0 (1) (m là tham số)
Giải phương trình (1) khi m = 1. 
Gọi hai nghiệm của phương trình (1) là x1; x2 . Tìm giá trị của m để biểu thức A = x12 + x22 + 2014 đạt giá trị nhỏ nhất.
Bài 4. Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB và cát tuyến MPQ (MP < MQ). Gọi I là trung điểm của dây PQ, E là giao điểm thứ hai giữa đường thẳng BI và đường tròn (O).
Chứng minh rằng: Bốn điểm B, O, I, M cùng nằm trên một đường tròn. 
Chứng minh rằng: . 
Gọi K là trung điểm của đoạn thẳng AE. Chứng minh ba điểm O; I; K thẳng hàng.
Bài 5. Cho có chu vi bằng 2. Gọi a, b, c là độ dài 3 cạnh của . Chứng minh rằng: A = . Dấu đẳng thức xảy ra khi tam giác ABC là tam giác gì?
HƯỚNG DẪN GIẢI.
BÀI
NỘI DUNG
1
a)
Điều kiện xác định: 
Rút gọn: 
b)
Với x , để P 0)
Kết hợp với đkxđ, ta được: 0 < x < 1
 Vậy để P < 0 0 < x < 1
2
Gọi x(m) là chiều dài của mảnh vườn hình chử nhật.
y(m) là chiều rộng của mảnh vườn hình chử nhật.
ĐK: x > 3; y > 0
Vì mảnh vườn hình chử nhật có chiều dài hơn chiều rộng 5m nên ta có phương trình x – y = 5 (1)
Khi giảm chiều dài 3m và tăng chiều rộng 4m thì diện tích mảnh vườn tăng thêm 20m2 nên ta có phương trình
 (x – 3)(y + 4) = xy + 20 (2)
Từ (1) và (2) ta có hệ phương trình: 
Vậy diện tích mảnh vườn hình chử nhật là: 12.17 = 204 m2
3
a)
Khi m = 1 thì phương trình (1) trở thành:
Ta có: a - b + c = 1 – (- 6) – 7 = 0
Suy ra phương trình có 2 nghiệm x1 = - 1; 
Vậy với m = 1 thì phương trình (1) có tập nghiệm là S = 
b)
Ta có: 
Để PT (1) có hai nghiệm x1; x2 
Theo hệ thức Vi-ét ta có: 
Theo bài ra, ta có: 
A = 2(m + 3)2 + 4(m + 3) + 2016 2016 
Dấu “=” xảy m + 3 = 0 (tm)
Vậy MinA = 2016 m = - 3
4
Hình vẽ
a)
Ta có: (MB là tiếp tuyến của đường tròn (O))
 IP = IQ (gt) (Quan hệ vuông góc giữa đường kính và dây cung) (gt)
Xét tứ giác BMIO có 
 Tứ giác BMIO nội tiếp đường tròn (Vì tổng số đo 2 góc đối diện bằng 1800)
Bốn điểm B, O, I, M cùng nằm trên một đường tròn.
b)
Theo tính chất hai tiếp tuyến cắt nhau
Ta có: OM là tia phân giác của 
Mà sđ(Tính chất góc ở tâm)sđ(1)
Ta lại có đ(2) (góc nội tiếp chắn ).
Từ (1) và (2) suy ra: (3)
c)
Do tứ giác BOIM nội tiếp đường tròn (cm câu a)
sđ (4) (2 góc nội tiếp cùng chắn )
Từ (3) và (4) 
Mà là hai góc ở vị trí đồng vị 
 và (*)
Mặt khác: Ta lại có AK = KE(gt) 
 (**) (Quan hệ vuông góc giữa đường kính và dây cung)
Từ (*) và (**) OK trùng với OI Ba điểm O, I, K thẳng hàng.
5
Ta có a + b + c = 2 
Đặt b + c – a = x (1)
 c + a – b = y (2)
 a + b – c = z (3)
suy ra x, y, z > 0 và x + y + z = 2 (vì a + b + c = 2)
Cộng (2) và (3) vế theo vế, ta được a = 
 Tượng tự: b = ; c = 
Do đó: A = 
 A = 
 A = 
 A (Bất đẳng thức cô – si)
 A 
Dấu “=” xảy ra khi và chỉ khi 
Khi đó a2 = b2 + c2 vuông.

Tài liệu đính kèm:

  • docDe on tap thi vao 10 - So 3.doc