Đề kiểm tra khảo sát Chuyên đề môn toán – lớp 12 thời gian làm bài 180 phút

pdf 7 trang Người đăng phongnguyet00 Lượt xem 760Lượt tải 0 Download
Bạn đang xem tài liệu "Đề kiểm tra khảo sát Chuyên đề môn toán – lớp 12 thời gian làm bài 180 phút", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề kiểm tra khảo sát Chuyên đề môn toán – lớp 12 thời gian làm bài 180 phút
 TRƯỜNG THPT Lấ XOAY 
NĂM HỌC 2014 - 2015 
ĐỀ KIỂM TRA KHẢO SÁT CHUYấN ĐỀ 
MễN TOÁN – LỚP 12 
Thời gian làm bài 180 phỳt. 
Cõu 1. Cho hàm số 
2 1
xy
x
=
−
 (C). 
a. Khảo sỏt và vẽ ủồ thị hàm số. 
b. Tỡm k ủể ủường thẳng ủi qua ủiểm A(5; 1
3
) cú hệ số gúc k tiếp xỳc với (C). 
Cõu 2. Giải phương trỡnh lượng giỏc: 22cos 3 sin 1 2sin 3 .
2
x
x x+ = + 
Cõu 3. Giải phương trỡnh: 
1
2
2 2 4
4log log 20 0x x− − = . 
Cõu 4. Tớnh hệ số của số hạng chứa 7x trong khai triển của biểu thức
122P x
x x
 
= − 
 
. 
Cõu 5. Cú một quả búng hỡnh cầu ủặc ủường kớnh 20cm ủược ủặt ủứng yờn trờn mặt 
phẳng nằm ngang. Người ta lấy một chiếc nún ỳp vào quả búng thỡ thấy ủỏy nún vừa 
chạm với mặt phẳng nằm ngang và cỏc ủường sinh của mặt nún cũng vừa tiếp xỳc với bề 
mặt của quả búng. Biết rằng ủộ rộng của gúc ở ủỉnh nún là 600. Tớnh thể tớch của khối 
nún giới hạn bởi chiếc nún và mặt phẳng nằm ngang và tớnh thể tớch phần khụng gian bờn 
trong khối nún mà khụng bị quả búng chiếm chỗ. 
Cõu 6. Cho hỡnh chúp S.ABCD cú ủỏy ABCD là hỡnh thang vuụng tại A và B. Hỡnh 
chiếu của ủỉnh S lờn mặt phẳng (ABCD) trựng với giao ủiểm I của AC và BD. Mặt bờn 
(SAB) hợp với ủỏy một gúc 600. Biết rằng AB = BC = a, AD =3a, Tớnh thể tớch khối chúp 
S.ABCD và khoảng cỏch từ D ủến mặt phẳng (SAB) theo a. 
Cõu 7. Trờn mặt phẳng với hệ trục tọa ủộ Oxy, cho tam giỏc ABC. Đường phõn giỏc 
trong gúc A cú phương trỡnh : 2 0,d x y− + =
ủường cao hạ từ B cú phương trỡnh 
' : 4 3 1 0d x y+ − = . Biết hỡnh chiếu của C lờn AB là ủiểm H(-1;-1). Tỡm tọa ủộ cỏc ủiểm A, 
B, C. 
Cõu 8. Giải hệ PT 
( )
( ) ( )( )
3 2
2 2
1
, ( , ).
3 2 9 3 4 2 1 1 0
xy x x y x y
x y
y x y x x
 + = + + −

∈
+ + + + + + + =
 
Cõu 9. Cho ba số dương , ,a b c thay ủổi và thỏa món 2a b c+ + = . Tỡm GTLN của biểu 
thức 
2 2 2
ab bc caS
ab c bc a ca b
= + +
+ + +
-----------------Hết----------------- 
Thớ sinh khụng ủược dựng tài liệu. Cỏn bộ coi thi khụng giải thớch gỡ thờm! 
Họ và tờn thớ sinh:SBD: 
Cảm ơn Hồng Nhung (hnhung89@gmail.com) đó gửi tới www.laisac.page.tl
Hướng dẫn chấm và ủỏp ỏn 
I. Hướng dẫn chấm 
II. II. Đỏp ỏn chi tiết 
Cõu Nội dung Điểm 
Cho hàm số 
2 1
xy
x
=
−
 (C). Khảo sỏt và vẽ ủồ thị hàm số 1.0 
• TXĐ 1\ .
2
D  =  
 

 0.25 
• 
1lim
2x
y
→±∞
= , ủồ thị cú TCN 1
2
y = ; 
1 1
2 2
lim ; lim
x x
y y
+ −
   
→ →   
   
= +∞ = −∞ , ủồ thị hàm số cú 
TCĐ 1
2
x = . 
• ( )2
1
' ' 0, .
2 1
y y x D
x
= − ⇒ < ∀ ∈
−
0.25 
• BBT 
x −∞ 1/2 +∞ 
y' - - 
y 
Hàm số nghịch biến trờn cỏc khoảng 1 1; , ;
2 2
   
−∞ +∞   
   
. 
0.25 
1a 
• Đồ thị 
Đồ thị nhận 1 1;
2 2
I   
 
 là tõm ủối xứng 
0.25 
Tỡm k ủể ủường thẳng ủi qua ủiểm A(5; 1
3
) cú hệ số k tiếp xỳc với (C). 1.0 1b 
Đường thẳng ủi qua A cú hệ số gúc k cú pt: ( ) 15 ( )
3
y k x= − + ∆ . 0.25 
1
2
1
2
−∞
+∞
∆ tiếp xỳc với (C) khi và chỉ khi hệ phương trỡnh 
( )
( )2
15
2 1 3
1
2 1
x k x
x
k
x

= − +
−

− =
−
cú nghiệm. 0.25 
Hệ PT 
( ) ( )
( )
2
2
1 15 (1)
2 1 32 1
1 (2)
2 1
x
x
x x
k
x

= − − +
−
−
⇔ 

− =

−
. 
( )2 2
2
1(1) 2 5 4 4 1
3
2 4 16 0
4
2
x x x x x
x x
x
x
⇔ − = − + − +
⇔ + − =
= −
⇔ 
=
0.25 
Với 14
81
x k= − ⇒ = − 
Với 12
9
x k= ⇒ = − 
KL: 
0.25 
Giải phương trỡnh lượng giỏc: 22cos 3 sin 1 2sin 3
2
x
x x+ = + 1.0 
PT cos 3 sin 2sin 3x x x⇔ + = 0.25 
1 3
cos sin sin 3 sin sin 3
2 2 6
x x x x x
pi 
⇔ + = ⇔ + = 
 
 0.25 
3 2
6 12
, .
5 53 2
6 24 2
x x k x k
k
x x k x k
pi pi
pi pi
pi pi pi
pi
 
= + + = + 
⇔ ⇔ ∈ 
 
= − + = +
 
 0.25 
2 
KL:Pt cú cỏc nghiệm 5, , .
12 24 2
x k x k kpi pi pipi= + = + ∈ 0.25 
Giải phương trỡnh 
1
2
2 2 4
4log log 20 0x x− − = . 1.0 
ĐKXĐ 0x ≠ . 0.25 
3 
Ta cú 2 22 2 2 2PT 4log 2log 20 0 2log log 10 0x x x x⇔ − − = ⇔ − − = . 
Đặt 2logt x= ta ủược PT 2
2
2 10 0 5
2
t
t t
t
= −

− − = ⇔
 =

0.25 
Với 2
1 12 log 2 .
4 4
t x x x= − ⇒ = − ⇔ = ⇔ = ± 
Với 2
5 5log 32 x 32.
2 2
t x x= ⇒ = ⇔ = ⇔ = ± 
0.25 
KL: Phương trỡnh cú 4 nghiệm 1 1; ; 32, 32.
4 4
x x x x= = − = = − 0.25 
Tớnh hệ số của số hạng chứa 7x trong khai triển của biểu thức
122P x
x x
 
= − 
 
. 1.0 
Ta cú ( )
1212 3 3 512 12 12122 2 2
12 12
0 0
2 2 2 2
k
kkk k k
k k
P x x x C x x C x
x x
− − −
−
= =
    
= − = − = − = −    
     
∑ ∑ 0.50 
Số hạng chứa 7x ứng với k thỏa món 512 7 2.
2
k k− = ⇔ = 0.25 
4 
Vậy hệ số ủú là ( )2212 2 264C − = . 0.25 
Cú một quả búng hỡnh cầu ủặc ủường kớnh 20cm ủược ủặt ủứng yờn trờn mặt 
phẳng nằm ngang. Người ta lấy một chiếc nún ỳp vào quả búng thỡ thấy ủỏy nún 
vừa chạm với mặt phẳng nằm ngang và mặt xung quanh của nún cũng vừa 
chạm vào quả búng. Biết rằng ủộ rộng của gúc ở ủỉnh nún là 600. Tớnh thể tớch 
của khối nún giới hạn bởi chiếc nún và mặt phẳng nằm ngang và tớnh thể tớch 
phần khụng gian bờn trong khối nún mà khụng bị quả búng chiếm chỗ. 
1.0 
Giả sử cắt hệ hỡnh ủú bằng một mặt phẳng ủi 
qua trục của nún ta ủược thiết diện như hỡnh vẽ. 
Trong ủú ABC∆ là tam giỏc ủều và là thiết diện 
của khối nún. Hỡnh trũn tõm I là thiết diện của 
quả búng. 
Ta nhận thấy ABC∆ ngoại tiếp ủường trũn tõm 
I. 
0.25 
Hỡnh nún cú chiều cao là 3 30 ( )OH IH cm= = . 
Bỏn kớnh ủỏy nún là 30 10 3 ( )
3
HA cm= = . 0.25 
Thể tớch khối nún là ( )2 31 1 1. . .30. .300 3000 .3 3V OH AH cmpi pi pi= − = = 0.25 
5 
Thể tớch phần khụng gian bờn trong khối nún khụng bị quả búng chiếm chỗ là 
( )2 3 32 1 4 4000 5000. . 3000 .3 3 3 3V OH AH IH cmpi pi pi pi pi= − = − = 0.25 
Cho hỡnh chúp S.ABCD cú ủỏy ABCD là hỡnh thang vuụng tại A và B. Hỡnh 
chiếu của ủỉnh S lờn mặt phẳng (ABCD) trựng với giao ủiểm I của AC và BD. 
Mặt bờn (SAB) hợp với ủỏy một gúc 600. Biết rằng AB = BC = a, AD =3a, Tớnh 
thể tớch khối chúp S.ABCD và khoảng cỏch từ D ủến mặt phẳng (SAB) theo a. 
1.0 
Gọi K là hỡnh chiếu của I lờn AB. 
Suy ra  060 .SKI = 
0.25 
Do / / KI BIIK AD
AD BD
⇒ = . Mà 1 1 1 .
3 3 4 4
BI BC a BI BI
ID AD a BI ID BD
= = = ⇒ = ⇒ =
+
Suy ra 1 3 3 3 .
4 4 4
KI a aKI SI
AD
= ⇒ = ⇒ = 
( )
3
.
1 1 3 3 1 3
. .S . . 3 .
3 3 4 2 2S ABCD ABCD
a aV SI a a a= = + = (ủvdt). 
0.25 
Gọi H là hỡnh chiếu của I lờn SK. Ta cú AB IK AB IH
AB SI
⊥ 
⇒ ⊥⊥ 
. 
Từ ủú suy ra ( ) ( ), ( ) .IK SAB d I SAB IK⊥ ⇒ = 
Mà do ( ) ( )4 , ( ) 4 , ( ) 4 .DB IB d D SAB d I SAB IH= ⇒ = = 
0.25 
6 
Lại cú 2 2 2 2 2 2
1 1 1 16 16 64 3 3
.
27 9 27 8
aIH
IH IS IK a a a
= + = + = ⇔ = 
Vậy ( ) 3 3, ( ) .
2
ad D SAB = 
0.25 
7 
Trờn mặt phẳng với hệ trục tọa ủộ Oxy, cho tam giỏc ABC cú ủường phõn giỏc 
trong gúc A cú phương trỡnh d: 2 0x y− + =
ủường cao hạ từ B cú phương trỡnh 
d’: 4 3 1 0x y+ − = . Biết hỡnh chiếu của C lờn AB là ủiểm H(-1;-1). Tỡm tọa ủộ cỏc 
ủỉnh A, B, C. 
1.0 
Gọi K là ủiểm ủối xứng với H qua ủường phõn giỏc trong gúc A. Khi ủú K thuộc 
ủường thẳng AC. Đường thẳng HK cú 
phương trỡnh 
2 0x y+ + = . Gọi I là giao ủiểm của HK và 
ủường phõn giỏc trong gúc A thỡ I cú tọa ủộ là 
nghiệm của hệ 
( )2 0 2 2;0
2 0 0
x y x
I
x y y
− + = = − 
⇔ ⇒ − 
+ + = = 
. 
I là trung ủiểm HK nờn suy ra ( )3;1K − . 
0.25 
Khi ủú AC là ủường thẳng qua K và vuụng gúc với d’. 
Suy ra AC: ( ) ( )3 3 4 1 0 3 4 13 0.x y x y+ − − = ⇔ − + = 
A cú tọa ủộ thỏa món ( )2 0 5 5,7
3 4 13 0 7
x y x
A
x y y
− + = = 
⇔ ⇒ 
− + = = 
0.25 
AB cú PT: 1 1 4 3 1 0
6 8
x y
x y+ += ⇔ − + = . 
B cú tọa ủộ thỏa món 
04 3 1 0 10, .14 3 1 0 3
3
x
x y
B
x y y
=+ − =   
⇔ ⇒   
− + = =   
0.25 
HC cú phương trỡnh ( ) ( )3 1 4 1 0 3 4 7 0x y x y+ + + = ⇔ + + = . 
C cú tọa ủộ thỏa món hệ pt: 
10
3 4 7 0 10 33
, .
3 4 13 0 3 3 4
4
x
x y
C
x y y

= −+ + =   
⇔ ⇒ −   
− + =   
=

0.25 
Giải hệ PT 
( )
( ) ( )( )
3 2
2 2
1
, ( , ).
3 2 9 3 4 2 1 1 0
xy x x y x y
x y
y x y x x
 + = + + −

∈
+ + + + + + + =
 1.0 
ĐKXĐ .x∀ ∈ 
Ta cú ( ) 3 2 3 2 21 0xy x x y x y x x y y xy x y+ = + + − ⇔ − + − + − = 
 ( ) ( )2 21 0 1
y x
x y x y
y x
=
⇔ − − + = ⇔ 
= +
0.25 
8 
Với 2 1y x= + thay vào PT thứ 2 ta ủược 
 ( )( ) ( )( )2 2 2 23 1 2 9 3 4 6 1 1 0x x x x x+ + + + + + + + = . Dễ thấy PT vụ nghiệm. 
Với y x= thay vào PT thứ 2 ta ủược ( ) ( ) ( )2 23 2 9 3 4 2 1 1 0x x x x x+ + + + + + + = 
0.25 
( ) ( ) ( )( )
( ) ( ) ( )( )
22
22
3 2 9 3 2 1 3 2 1 2
3 2 9 3 2 1 3 2 1 2
x x x x
x x x x
⇔ + + = − + + + +
⇔ + + = − − + − − +
Xột hàm số ( )2( ) 2 2f t t t= + + ta cú 22 2'( ) 2 2 02tf t t t= + + + >+ suy ra hàm số 
ủồng biến. 
0.25 
Từ ủú suy ra 13 2 1 .
5
x x x= − − ⇔ = − Vậy HPT cú nghiệm ( ) 1 1; ; .
5 5
x y  = − − 
 
 0.25 
Cho ba số dương , ,a b c thay ủổi và thỏa món 2a b c+ + = . Tỡm GTLN của biểu 
thức 
2 2 2
ab bc caS
ab c bc a ca b
= + +
+ + +
1.0 
Ta cú ( ) ( )( )
1
2 2
ab ab ab a b
ab c ab a b c c a c b c a c b c
 
= = ≤ + + + + + + + + + 
Đẳng thức xảy ra khi và chỉ khi a b
a c b c
=
+ +
0.25 
Tương tự ta cũng cú 1 1,
2 2 2 2
bc b c ca c a
bc a b a c a ca b c b a b
   ≤ + ≤ +   + + + + + +   
 0.25 
Cộng cỏc vế ta ủược 1 3 .
2 2
a b b c c aS
a b b c c a
+ + + ≤ + + = + + + 
Đẳng thức xảy ra khi và chỉ khi 2 .
3
a b c= = = 
0.25 
9 
Vậy max
2
.
2 3
S x y z3= ⇔ = = = 0.25 
Cảm ơn Hồng Nhung (hnhung89@gmail.com) đó gửi tới www.laisac.page.tl

Tài liệu đính kèm:

  • pdfkimtrong.de040.2015.pdf