ĐỀ DỰ BỊ THPT QUỐC GIA 2015 Câu 1 (1 điểm) Khảo sát sự biến thiên và vẽ đồ thị hàm số . Câu 2 (1 điểm) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [0;2]. Câu 3 (1 điểm) a) Cho số phức z thỏa mãn hệ thức: (3+ i)z = 16− 9i = 0. Tìm môđun của z. b) Giải phương trình: . Câu 4 (1 điểm) Tính tích phân . Câu 5 (1 điểm) Trong không gian với hệ tọa độ Ox yz, cho đường thẳng d : và mặt phẳng (P) : x + 2y − 2z + 3 = 0. Viết phương trình của mặt phẳng đi qua gốc tọa độ O và vuông góc với d. Tìm tọa độ điểm M thuộc d sao cho khoảng cách từ M đến (P) bằng 2. Câu 6 (1 điểm) a) Tình giá trị biểu thức , biết . b) Trong kỳ thi trung học phổ thông quốc gia có 4 môn thi trắc nghiệm và 4 môn thi tự luận. Một giáo viên được bốc thăm ngẫu nhiên để phụ trách coi thi 5 môn. Tính xác suất để giáo viên đó phụ trách coi thi ít nhất 2 môn trắc nghiệm Câu 7 (1 điểm) Trong không gian cho hình chóp S.ABC có đáy ABC là tam giác cân tại B, , AB = a, SB vuông góc mặt phẳng (ABC). Góc giữa măt phẳng (S AC) và mặt phẳng (ABC) bằng 450. Gọi M là trung điểm AC, N là trung điểm SM. Tính theo a thể tích khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (AB N). Câu 8 (1 điểm) Trong mặt phẳng với hệ tọa độ Ox y, cho tam giác ABC không cân nội tiếp đường tròn tâm I . Gọi H là hình chiếu vuông góc của A trên BC, K là hình chiếu vuông góc của B trên AI. Giả sử A(2;5), I(1;2) và điểm B thuộc đường thẳng 3x + y +5 = 0, đường thẳng HK có phương trình x − 2y = 0. Tìm tọa độ các điểm B,C. Câu 9 (1 điểm) Trong một cuộc thi pha chế mỗi đội chơi được dùng tối đa 24g hương liệu, 9lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu, pha chế 1 lít nước táo cần 20g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, Mỗi lít nước táo nhận được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất. Câu 10 (1 điểm) Cho các số thực a,b thuộc đoạn . Tìm giá trị nhỏ nhất của biểu thức .
Tài liệu đính kèm: