MÃ KÍ HIỆU .. ĐỀ THI VÀO LỚP 10 THPT Năm học 2015-2016 MÔN:TOÁN Thời gian làm bài: 120 phút ( không kể thời gian giao đề) ( Đề thi gồm 12 câu, 02 trang) Phần I: Trắc nghiệm ( 2,0 điểm ). Câu 1. Biểu thức được xác định khi: A. x ≥ B. x ≤ C. x ≤ và x ≠ 0 D. x ≥ và x ≠ 0 Câu 2. Trong các hàm số nào sau , hàm số nào nào nghịch biến? A. y = -5(x+2) -3 B. y = 5x - 6. C. y = x +2 D. y = - (2-x) Câu 3. Đường thẳng đi qua điểm A(0 ;3) và song song với đường thẳng x-2y=5 có phương trình là : A. y = -x +3 B. y = -2x +3 C. y = x +3 D. y = -2x-3 Câu 4. Phương trình x2 - 2x –m2-1 = 0 A. Có hai nghiệm trái dấu C. Có hai nghiệm cùng dấu B. Có nghiệm kép D. Vô nghiệm Câu 5. Cho tam giác ABC vuông tại A có AB=18 ; AC=24. Đường kính đường tròn ngoại tiếp tam giác đó bằng : A. 60 B. 40 C. 30 D. 30 Câu 6. Trong hình 1, tam giác ABC vuông ở A, AH BC. Độ dài của đoạn thẳng AC bằng A. 3. B. . C. 2 D. 18 Câu 7. Diện tích hình quạt tròn cung 600 của đường tròn bán kính bằng 2cm là : A. cm2 B. cm2 . C. cm2 D. cm2 Câu 8. Cho hình nón có bán kính đáy là 6cm, chiều cao là 8cm. diện tích xung quanh của hình nón là : A. 24 cm2 B. 60 cm2 C. 48 cm2 D. 50 cm2 Phần II: Tự luận (8,0 điểm) . Bài 1 (2,0 điểm). Rút gọn các biểu thức: a) A= (2-3+4) b) B= 2. Cho hàm số y=(m-2)x+(n+2) (d). Hãy xác định giá trị của m,n để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng -2 và cắt trục hoành tại điểm có hoành độ bằng 1. Bài 2 (2,0 điểm). Cho phương trình x2+mx+(2m-4) =0 (1). Giải phương trình khi m=2. Tìm các giá trị của m để phương trình (1) có hai nghiệm phân biệt. Tìm các giá trị của m để phương trình (1) có ít nhất một nghiệm không âm. Tìm số có hai chữ số , biết rằng tổng hai chữ số của chúng bằng 15.Tích của hai chữ số ấy nhỏ hơn số đã cho là 22. Bài 3 (3,0 điểm). Cho đường tròn (O, R) dây AB cố định không đi qua tâm. C là điểm nằm trên cung nhỏ AB. Kẻ dây CD vuông góc với AB tại H. Kẻ CK vuông góc với đường thẳng DA. Chứng minh: Bốn điểm A, H, C, K cùng thuộc một đường tròn. Chứng minh: CD là tia phân giác của góc BCK. KH cắt BD tại E. Chứng minh: CE BD Khi C di chuyển trên cung nhỏ AB. Xác định vị trí của điểm C để (CK. AD + CE. DB) có giá trị lớn nhất ? Bài 4 (1 điểm) Với x > 0, tìm giá trị nhỏ nhất của biểu thức: M = ĐÁP ÁN ĐỀ THI TUYỂN LỚP 10 THPT Năm học 2015 - 2016 MÔN : TOÁN (Hướng dẫn chấm gồm 2 trang) HƯỚNG DẪN CHẤM VÀ BIỂU ĐIỂM MÔN TOÁN I. Phần 1. Trắc nghiệm (2,0 điểm). Mỗi câu đúng được 0,25 điểm. Câu 1 2 3 4 5 6 7 8 Đáp án C A C A C A A B II. Phần 2. Tự luận ( 8,0 điểm) Bài Đáp án Điểm Bài 1 (2,0 điểm) 1. (1,0 điểm) a) A= (2-3+4)=2-3+4 0,25đ =10-30+60=40 0,25đ b) B= = 0,25đ ===1 0,25đ 2. (1,0 điểm) Vì (d) cắt trục tung tại điểm có tung độ bằng -2 nên n+2=-2n=-4 0,25đ Vì (d) cắt trục hoành tại điểm có hoành độ bằng 1 có nghĩa là (d) đi qua điểm có tọa độ (1;0) ta thay x=1,y=0 vào hàm số ta được : 0=(m-2).1+n+2 0= m-2-4+2 (do n=-4) m=4 ............................................................................................................................................ Vậy với m=4;n=-4 thì đường thẳng (d) cắt trục tung tại điểm có tung độ bằng -2 và cắt trục hoành tại điểm có hoành độ bằng 1. 0,5đ ......... 0,25đ Bài 2 (2,0 điểm) 2.1a. (0,5 điểm) Xét phương trình x2+mx+2m-4=0 (1). Với phương trình (1) trở thành x2+2x+4-4=0 x2+2x=0 0,25đ hoặc Vậy với phương trình (1) có 2 nghiệm . 0,25đ 2.1b. (0,25 điểm) Xét phương trình (1) có Nên phương trình (1) có 2 nghiệm phân biệt với 4 0,25đ 2.1.c (0,5 điểm) Trường hợp phương trình có 2 nghiệm âm khi và chỉ khi m>2 0,25đ Vậy với m2 thì phương trình (1) có ít nhất một nghiệm không âm 0,25đ 2.2. (0,75 điểm) Gọi chữ số hàng chục của số có hai chữ số là a điều kiện 0<a<10; aN chữ số hàng đơn vị là 15-a 0,25đ Khi đó số đã cho là :10a+15-a=9a+15 Mà tích của hai chữ số ấy nhỏ hơn số đã cho là 22 đơn vị nên ta có phương trình; 9a+15-a(15-a) =22 0,25đ a2-6a-7=0 Vì 1+6-7=0 Phương trình có 2 nghiệm a1=-1 (loại) ;a2=7(thỏa mãn) 0,25đ Bài 3 (3,0 điểm) Vẽ hình (0,5 điểm) Vẽ hình đúng để làm câu a 0,50đ 3.a.(0,5 điểm) CM được: =1800 => Tứ giác AHCK nội tiếp 0,5đ 3.b (0,75 điểm) CM được: BCD = KCD (vì đều = BAD) => CD là tia phân giác của BCK. 0,5 đ 0,25đ 3.c. (0,75 điểm) CM được tứ giác CKDE nội tiếp vì: CDE = CKE (= CAB) => CED = CKD = 900 hay CE BD 0,5đ 0,25đ 3.d. (0,5 điểm) Ta có: AD.CK = AH.CD (= 2 lần diện tích ACD) CE.BD = BH.CD (= 2 lần diện tích BCD) => AD.CK + CE.BD = AH.CD + BH.CD = CD(AH + BH) = CD. AB 0.25đ Vì AB không đổi nên CD lớn nhất khi CD là đường kính => C ở chính giữa của cung AB nhỏ 0,25đ Bài 4 (1,0 điểm) M = 4(x-)2+x++2010 0,25đ Vì 4(x-)2³0 với x > 0, Vì x+³ =1. 0,25đ =>M ³1+2010. dấu “=” xảy ra khi x = (TM) 0,25đ Vậy MinM = 2011 x = 0,25đ * Chú ý: - Trên đây chỉ trình bày một cách giải, nếu học sinh làm cách khác mà đúng thì cho điểm tối đa ứng với điểm của câu đó. - Học sinh làm đúng đến đâu cho điểm đến đó theo đúng biểu điểm. - Trong một câu học sinh làm phần trên sai phần dưới đúng thì không cho điểm. - Bài hình học, học sinh vẽ sai hình thì không chấm điểm. Học sinh không vẽ hình mà vẫn làm đúng thì cho nửa số điểm của các câu làm được. - Bài làm có nhiều ý liên quan đến nhau, nếu học sinh công nhận ý trên mà làm đúng ý dưới thì cho điểm ý đó. - Điểm của bài thi là tổng điểm các câu làm đúng và không được làm tròn. PHẦN KÝ XÁC NHẬN: TÊN FILE ĐỀ THI:ĐỀ THI VÀO LỚP 10 THPT VÀ HƯỚNG DẪN CHẤM MÔN TOÁN MÃ ĐỀ THI (DO SỞ GD&ĐT GHI):.. TỔNG SỐ TRANG (ĐỀ THI VÀ HƯỚNG DẪN CHẤM) LÀ: 05 TRANG.
Tài liệu đính kèm: