Các đề thi học sinh giỏi Toán 7

doc 7 trang Người đăng tuanhung Lượt xem 981Lượt tải 0 Download
Bạn đang xem tài liệu "Các đề thi học sinh giỏi Toán 7", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Các đề thi học sinh giỏi Toán 7
 §Ò 1 
Bµi 1. (4 ®iÓm)
Chøng minh r»ng 76 + 75 – 74 chia hÕt cho 55
TÝnh A = 1 + 5 + 52 + 53 + . . . + 549 + 55 0
Bµi 2. (4 ®iÓm)
T×m c¸c sè a, b, c biÕt r»ng : vµ a + 2b – 3c = -20
Cã 16 tê giÊy b¹c lo¹i 20 000®, 50 000®, 100 000®. TrÞ gi¸ mçi lo¹i tiÒn trªn ®Òu b»ng nhau. Hái mçi lo¹i cã mÊy tê?
Bµi 3. (4 ®iÓm)
Cho hai ®a thøc f(x) = x5 – 3x2 + 7x4 – 9x3 + x2 - x
 g(x) = 5x4 – x5 + x2 – 2x3 + 3x2 - 
	TÝnh f(x) + g(x) vµ f(x) – g(x).
TÝnh gi¸ trÞ cña ®a thøc sau: 
 A = x2 + x4 + x6 + x8 + + x100 t¹i x = -1.
Bµi 4. (4 ®iÓm)
Cho tam gi¸c ABC cã gãc A b»ng 900, trªn c¹nh BC lÊy ®iÓm E sao cho BE = BA. Tia ph©n gi¸c cña gãc B c¾t AC ë D.
So s¸nh c¸c ®é dµi DA vµ DE.
TÝnh sè ®o gãc BED.
Bµi 5. (4 ®iÓm)
	Cho tam gi¸c ABC, ®êng trung tuyÕn AD. KÎ ®êng trung tuyÕn BE c¾t AD ë G. Gäi I, K theo thø tù lµ trung ®iÓm cña GA, GB. Chøng minh r»ng:
IK// DE, IK = DE.
AG = AD.
§Ò 2: 
Môn: Toán 7
Bài 1: (3 điểm): Tính
Bài 2: (4 điểm): Cho chứng minh rằng:
a) 	b) 
Bài 3:(4 điểm) Tìm biết:
a) 	b) 	 
Bài 4: (3 điểm) Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây
Bài 5: (4 điểm) Cho tam giác ABC cân tại A có , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh:
Tia AD là phân giác của góc BAC
 AM = BC
Bài 6: (2 điểm): Tìm biết: 
§Ò 3
Bài 1:(4 điểm)
a) Thực hiện phép tính: 
	b) Chứng minh rằng : Với mọi số nguyên dương n thì : 
chia hết cho 10
Bài 2:(4 điểm)
Tìm x biết:
a. 
b. 
Bài 3: (4 điểm)
Số A được chia thành 3 số tỉ lệ theo . Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A.
Cho . Chứng minh rằng: 
Bài 4: (4 điểm)
Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:
a) AC = EB và AC // BE
b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng
c) Từ E kẻ . Biết = 50o ; =25o .
Tính và 
Bài 5: (4 điểm)
Cho tam giác ABC cân tại A có , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh:
Tia AD là phân giác của góc BAC
 AM = BC
®¸p ¸n - §Ò 1 
Bµi 1. (4®)
a) 74( 72 + 7 – 1) = 74. 55 55 (®pcm)	
Bµi 4. 4®: VÏ h×nh (0,5®) – phÇn a) 1,5® - phÇn b) 2®
a) ABD =EBD (c.g.c) => DA = DE
b) V× ABD =EBD nªn gãc A b»ng gãc BED
 Do gãc A b»ng 900 nªn gãc BED b»ng 900
Bµi 5: 4®
a) Tam gi¸c ABC vµ tam gi¸c ABG cã:
 DE//AB, DE = AB, IK//AB, IK= AB
 Do ®ã DE // IK vµ DE = IK
b)GDE = GIK (g. c. g) v× cã: DE = IK (c©u a)
 Gãc GDE = gãc GIK (so le trong, DE//IK)
 Gãc GED = gãc GKI (so le trong, DE//IK)
 GD = GI. Ta cã GD = GI = IA nªn AG = AD
VÏ h×nh: 0,5®
PhÇn a) ®óng: 2® ; PhÇn b) ®óng: 1,5®
 §Ò 2: 
Bài 1: 3 điểm	
= 	
Bài 2:
Từ suy ra 	 khi đó = 	0.5đ
 b) Theo câu a) ta có: từ 	hay vậy 	 0.5đ
Bài 4: 
Cùng một đoạn đường, cận tốc và thời gian là hai đại lượng tỉ lệ nghịch 0.5đ
Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s ; 4m/s ; 3m/s
Ta có: và 	1đ	
hay: 0.5đ
Do đó:
Bài 5: 
-Vẽ hình, ghi GT, KL đúng 	0.5đ
a) Chứng minh ADB = ADC (c.c.c) 	1đ
suy ra 
Do đó 
b) ABC cân tại A, mà (gt) nên 
ABC đều nên 
Tia BD nằm giữa hai tia BA và BC suy ra . Tia BM là phân giác của góc ABD 
nên 
Xét tam giác ABM và BAD có:
AB cạnh chung ; 
Vậy: ABM = BAD (g.c.g) suy ra AM = BD, mà BD = BC (gt) nên AM = BC
Bài 6: 
	Ta có 8(x-2009)2 = 25- y2
 8(x-2009)2 + y2 =25 (*) 0.5đ
Vì y2 0 nên (x-2009)2 , suy ra (x-2009)2 = 0 hoặc (x-2009)2 =1	 0.5đ
Với (x -2009)2 =1 thay vào (*) ta có y2 = 17 (loại) 
Với (x- 2009)2 = 0 thay vào (*) ta có y2 =25 suy ra y = 5 (do ) 0.5đ 
 Từ đó tìm được (x=2009; y=5)	 0.5
 §Ò 3
Bài 3: (4 điểm)
Đáp án
Thang điểm
a) (2,5 điểm)
Gọi a, b, c là ba số được chia ra từ số A.
Theo đề bài ta có: a : b : c = (1) 
và a2 +b2 +c2 = 24309 (2)
Từ (1) = k 
Do đó (2) 
k = 180 và k =
+ Với k =180, ta được: a = 72; b = 135; c = 30.
 Khi đó ta có số A = a + b + c = 237.
+ Với k =, ta được: a = ; b =; c =
Khi đó ta có só A =+( ) + () = . 
b) (1,5 điểm)
Từ suy ra 	
 khi đó 	= 	
0,5 điểm
0,5 điểm
0,5 điểm
0,5 điểm
0,5 điểm
0,5 điểm
0,5 điểm
0,5 điểm
Bài 4: (4 điểm)
Đáp án
Thang điểm
Vẽ hình
0,5 điểm
a/ (1điểm) Xét và có :
 AM = EM (gt )	
 = (đối đỉnh )
BM = MC (gt )
Nên : = (c.g.c )	0,5 điểm
 AC = EB	
Vì = = 
(2 góc có vị trí so le trong được tạo bởi đường thẳng AC và EB cắt đường thẳng AE ) 
Suy ra AC // BE . 	0,5 điểm	
b/ (1 điểm )
Xét và có : 
AM = EM (gt )
= ( vì )
AI = EK (gt )
Nên ( c.g.c ) 	0,5 điểm Suy ra = 	
Mà + = 180o ( tính chất hai góc kề bù )	
 + = 180o 
 Ba điểm I;M;K thẳng hàng 	0,5 điểm
c/ (1,5 điểm )
Trong tam giác vuông BHE ( = 90o ) có = 50o 
 = 90o - = 90o - 50o =40o 	0,5 điểm
 = - = 40o - 25o = 15o 	0,5 điểm
 là góc ngoài tại đỉnh M của 
 Nên = + = 15o + 90o = 105o 
 ( định lý góc ngoài của tam giác ) 	0,5 điểm
Bài 5: (4 điểm)
-Vẽ hình	
a) Chứng minh ADB = ADC (c.c.c) 	1điểm	
suy ra 	0,5 điểm
Do đó 	0,5 điểm
b) ABC cân tại A, mà (gt) nên 
ABC đều nên 	
Tia BD nằm giữa hai tia BA và BC suy ra .
 Tia BM là phân giác của góc ABD 
nên 	0,5 điểm
Xét tam giác ABM và BAD có:
AB cạnh chung ; 
Vậy: ABM = BAD (g.c.g) 
 suy ra AM = BD, mà BD = BC (gt) nên AM = BC	0,5 điểm

Tài liệu đính kèm:

  • doccac_de_thi_hsg_lop_7doc.doc