CÁC BÀI HÌNH TỔNG HỢP ÔN THI LỚP 10 Bài 1: Cho tam giác ABC có 3 góc nhọn và AB<AC nội tiếp trong đường tròn tâm O.Kẻ đường cao AD và đường kính AA’.Gọi E:F theo thứ tự là chân đường vuông góc kẻ từ B và C xuống đường kính AA’. C/m AEDB nội tiếp. C/m DB.A’A=AD.A’C C/m:DE^AC. Gọi M là trung điểm BC.Chứng minh MD=ME=MF. 4) ·Gọi N là trung điểm AB.Nên N là tâm đường tròn ngoại tiếp tứ giác ABDE. Do M;N là trung điểm BC và AB ÞMN//AC(Tính chất đường trung bình) Do DE^AC ÞMN^DE (Đường kính đi qua trung điểm một dây)ÞMN là đường trung trực của DE ÞME=MD. · Gọi I là trung điểm ACÞMI//AB(tính chất đường trung bình) Þ (Cùng chắn cung A’C). Do ADFC nội tiếp Þ(Cùng chắn cung FC) Þ hay DF//BA’ Mà ÞMI^DF.Đường kính MI^dây cung DFÞMI là đường trung trực của DFÞMD=MF. Vậy MD=ME=MF. Bài 2: Cho DABC có ba góc nhọn nội tiếp trong đường tròn tâm O.Gọi M là một điểm bất kỳ trên cung nhỏ AC.Gọi E và F lần lượt là chân các đường vuông góc kẻ từ M đến BC và AC.P là trung điểm AB;Q là trung điểm FE. 1/C/m MFEC nội tiếp. 2/C/m BM.EF=BA.EM 3/C/M DAMP∽DFMQ. 4/C/m góc PQM=90o. 4/C/m góc:PQM=90o. Do góc AMP=FMQ ÞPMQ=AMF ÞDPQM∽DAFM Þgóc MQP=AFM Mà góc AFM=1vÞMQP=1v(đcm). Bài 3: Cho (O) đường kính BC,điểm A nằm trên cung BC.Trên tia AC lấy điểm D sao cho AB=AD.Dựng hình vuông ABED;AE cắt (O) tại điểm thứ hai F;Tiếp tuyến tại B cắt đường thẳng DE tại G. C/m BGDC nội tiếp.Xác định tâm I của đường tròn này. C/m DBFC vuông cân và F là tâm đường tròn ngoại tiếp DBCD. C/m GEFB nội tiếp. Chứng tỏ:C;F;G thẳng hàng và G cũng nằm trên đường tròn ngoại tiếp DBCD.Có nhận xét gì về I và F 4/ C/m· C;F;G thẳng hàng:Do GEFB nội tiếp ÞGóc BFG=BEG mà BEG=1vÞBFG=1v.Do DBFG vuông cân ở FÞGóc BFC=1v.ÞGóc BFG+CFB=2vÞG;F;C thẳng hàng. C/m G cũng nằm trên :Do GBC=GDC=1vÞtâm đường tròn ngt tứ giác BGDC là FÞG nằn trên đường tròn ngoại tiếp DBCD. ·Dễ dàng c/m được Iº F. Bài 4: Cho DABC có 3 góc nhọn nội tiếp trong (O).Tiếp tuyến tại B và C của đường tròn cắt nhau tại D.Từ D kẻ đường thẳng song song với AB,đường này cắt đường tròn ở E và F,cắt AC ở I(E nằm trên cung nhỏ BC). C/m BDCO nội tiếp. C/m: DC2=DE.DF. C/m:DOIC nội tiếp. Chứng tỏ I là trung điểm FE. 3) Ta có: sđgóc BAC=sđcung BC(Góc nội tiếp) (1) Sđ góc BOC=sđcung BC(Góc ở tâm); OB=OC;DB=DC(tính chất hai tiếp tuyến cắt nhau);OD chung ÞDBOD=DCODÞGóc BOD=COD Þ2sđ gócDOC=sđ cung BC Þsđgóc DOC=sđcungBC (2) Từ (1)và (2)ÞGóc DOC=BAC. Do DF//ABÞgóc BAC=DIC(Đồng vị) ÞGóc DOC=DICÞ Hai điểm O và I cùng làm với hai đầu đoạn thẳng Dc những góc bằng nhauÞđpcm 4/Chứng tỏ I là trung điểm EF: Do DOIC nội tiếp Þ góc OID=OCD(cùng chắn cung OD) Mà Góc OCD=1v(tính chất tiếp tuyến)ÞGóc OID=1v hay OI^ID ÞOI^FE.Bán kính OI vuông góc với dây cung EFÞI là trung điểmEF. Còn rất nhiều bài tập hay nữa có đáp án câu khó mời mọi người giữ phím Ctrl rồi nháy chuột vào link dưới đây
Tài liệu đính kèm: