Sách giải – Người thầy của bạn 1 Bài tập ơn thi học sinh giỏi mơn Tốn lớp 9 (Chuẩn kiến thức, kỹ năng) PHẦN I: ĐỀ BÀI 1. Chứng minh 7 là số vơ tỉ. 2. a) Chứng minh : (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2) b) Chứng minh bất dẳng thức Bunhiacơpxki : (ac + bd)2 ≤ (a2 + b2)(c2 + d2) 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức : S = x2 + y2. 4. a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy : a b ab 2 . b) Cho a, b, c > 0. Chứng minh rằng : bc ca ab a b c a b c c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab. 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3. 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b. 7. Cho a, b, c là các số dương. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c) 8. Tìm liên hệ giữa các số a và b biết rằng : a b a b 9. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a b) Cho a, b, c > 0 và abc = 1. Chứng minh : (a + 1)(b + 1)(c + 1) ≥ 8 10. Chứng minh các bất đẳng thức : a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2) 11. Tìm các giá trị của x sao cho : a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1. 12. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d) 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đĩ. 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0. 15. Chứng minh rằng khơng cĩ giá trị nào của x, y, z thỏa mãn đẳng thức sau : Sách giải – Người thầy của bạn 2 x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0 16. Tìm giá trị lớn nhất của biểu thức : 2 1 A x 4x 9 17. So sánh các số thực sau (khơng dùng máy tính) : a) 7 15 và 7 b) 17 5 1 và 45 c) 23 2 19 và 27 3 d) 3 2 và 2 3 18. Hãy viết một số hữu tỉ và một số vơ tỉ lớn hơn 2 nhưng nhỏ hơn 3 19. Giải phương trình : 2 2 23x 6x 7 5x 10x 21 5 2x x . 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4. 21. Cho 1 1 1 1 S .... ... 1.1998 2.1997 k(1998 k 1) 1998 1 . Hãy so sánh S và 1998 2. 1999 . 22. Chứng minh rằng : Nếu số tự nhiên a khơng phải là số chính phương thì a là số vơ tỉ. 23. Cho các số x và y cùng dấu. Chứng minh rằng : a) x y 2 y x b) 2 2 2 2 x y x y 0 y x y x c) 4 4 2 2 4 4 2 2 x y x y x y 2 y x y x y x . 24. Chứng minh rằng các số sau là số vơ tỉ : a) 1 2 b) 3 m n với m, n là các số hữu tỉ, n ≠ 0. 25. Cĩ hai số vơ tỉ dương nào mà tổng là số hữu tỉ khơng ? Sách giải – Người thầy của bạn 3 26. Cho các số x và y khác 0. Chứng minh rằng : 2 2 2 2 x y x y 4 3 y x y x . 27. Cho các số x, y, z dương. Chứng minh rằng : 2 2 2 2 2 2 x y z x y z y z x y z x . 28. Chứng minh rằng tổng của một số hữu tỉ với một số vơ tỉ là một số vơ tỉ. 29. Chứng minh các bất đẳng thức : a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2) c) (a1 + a2 + .. + an) 2 ≤ n(a1 2 + a2 2 + .. + an 2). 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2. 31. Chứng minh rằng : x y x y . 32. Tìm giá trị lớn nhất của biểu thức : 2 1 A x 6x 17 . 33. Tìm giá trị nhỏ nhất của : x y z A y z x với x, y, z > 0. 34. Tìm giá trị nhỏ nhất của : A = x2 + y2 biết x + y = 4. 35. Tìm giá trị lớn nhất của : A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0 ; x + y + z = 1. 36. Xét xem các số a và b cĩ thể là số vơ tỉ khơng nếu : a) ab và a b là số vơ tỉ. b) a + b và a b là số hữu tỉ (a + b ≠ 0) c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0) 37. Cho a, b, c > 0. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c) 38. Cho a, b, c, d > 0. Chứng minh : a b c d 2 b c c d d a a b 39. Chứng minh rằng 2x bằng 2 x hoặc 2 x 1 Sách giải – Người thầy của bạn 4 40. Cho số nguyên dương a. Xét các số cĩ dạng : a + 15 ; a + 30 ; a + 45 ; ; a + 15n. Chứng minh rằng trong các số đĩ, tồn tại hai số mà hai chữ số đầu tiên là 96. 41. Tìm các giá trị của x để các biểu thức sau cĩ nghĩa : 2 2 2 1 1 1 2 A= x 3 B C D E x 2x xx 4x 5 1 x 3x 2x 1 2G 3x 1 5x 3 x x 1 42. a) Chứng minh rằng : | A + B | ≤ | A | + | B | . Dấu “ = ” xảy ra khi nào ? b) Tìm giá trị nhỏ nhất của biểu thức sau : 2 2M x 4x 4 x 6x 9 . c) Giải phương trình : 2 2 24x 20x 25 x 8x 16 x 18x 81 43. Giải phương trình : 2 22x 8x 3 x 4x 5 12 . 44. Tìm các giá trị của x để các biểu thức sau cĩ nghĩa : 2 2 2 1 1 A x x 2 B C 2 1 9x D 1 3x x 5x 6 2 2 2 1 x E G x 2 H x 2x 3 3 1 x x 42x 1 x 45. Giải phương trình : 2x 3x 0 x 3 46. Tìm giá trị nhỏ nhất của biểu thức : A x x . 47. Tìm giá trị lớn nhất của biểu thức : B 3 x x PHẦN II: HƯỚNG DẪN GIẢI 1. Giả sử 7 là số hữu tỉ m 7 n (tối giản). Suy ra 2 2 2 2 m 7 hay 7n m n (1). Đẳng thức này chứng tỏ 2m 7 mà 7 là số nguyên tố nên m 7. Đặt m = 7k (k Z), ta cĩ m2 = 49k2 (2). Từ (1) và (2) suy ra 7n2 = 49k2 nên n2 = 7k2 (3). Từ (3) ta lại cĩ n2 7 và vì 7 là số nguyên tố nên n 7. m và n cùng chia hết cho 7 nên phân số m n khơng tối giản, trái giả thiết. Vậy 7 khơng phải là số hữu tỉ; do đĩ 7 là số vơ tỉ. Sách giải – Người thầy của bạn 5 2. Khai triển vế trái và đặt nhân tử chung, ta được vế phải. Từ a) b) vì (ad – bc)2 ≥ 0. 3. Cách 1 : Từ x + y = 2 ta cĩ y = 2 – x. Do đĩ : S = x2 + (2 – x)2 = 2(x – 1)2 + 2 ≥ 2. Vậy min S = 2 x = y = 1. Cách 2 : Áp dụng bất đẳng thức Bunhiacopxki với a = x, c = 1, b = y, d = 1, ta cĩ : (x + y)2 ≤ (x2 + y2)(1 + 1) 4 ≤ 2(x2 + y2) = 2S S ≥ 2. mim S = 2 khi x = y = 1 4. b) Áp dụng bất đẳng thức Cauchy cho các cặp số dương bc ca bc ab ca ab và ; và ; và a b a c b c , ta lần lượt cĩ: bc ca bc ca bc ab bc ab 2 . 2c; 2 . 2b a b a b a c a c ; ca ab ca ab 2 . 2a b c b c cộng từng vế ta được bất đẳng thức cần chứng minh. Dấu bằng xảy ra khi a = b = c. c) Với các số dương 3a và 5b , theo bất đẳng thức Cauchy ta cĩ : 3a 5b 3a.5b 2 . (3a + 5b)2 ≥ 4.15P (vì P = a.b) 122 ≥ 60P P ≤ 12 5 max P = 12 5 . Dấu bằng xảy ra khi 3a = 5b = 12 : 2 a = 2 ; b = 6/5. 5. Ta cĩ b = 1 – a, do đĩ M = a3 + (1 – a)3 = 3(a – ½)2 + ¼ ≥ ¼ . Dấu “=” xảy ra khi a = ½ . Vậy min M = ¼ a = b = ½ . 6. Đặt a = 1 + x b3 = 2 – a3 = 2 – (1 + x)3 = 1 – 3x – 3x2 – x3 ≤ 1 – 3x + 3x2 – x3 = (1 – x)3. Suy ra : b ≤ 1 – x. Ta lại cĩ a = 1 + x, nên : a + b ≤ 1 + x + 1 – x = 2. Với a = 1, b = 1 thì a3 + b3 = 2 và a + b = 2. Vậy max N = 2 khi a = b = 1. 7. Hiệu của vế trái và vế phải bằng (a – b)2(a + b). 8. Vì | a + b | ≥ 0 , | a – b | ≥ 0 , nên : | a + b | > | a – b | a2 + 2ab + b2 ≥ a2 – 2ab + b2 4ab > 0 ab > 0. Vậy a và b là hai số cùng dấu. 9. a) Xét hiệu : (a + 1)2 – 4a = a2 + 2a + 1 – 4a = a2 – 2a + 1 = (a – 1)2 ≥ 0. b) Ta cĩ : (a + 1)2 ≥ 4a ; (b + 1)2 ≥ 4b ; (c + 1)2 ≥ 4c và các bất đẳng thức này cĩ hai vế đều dương, nên : [(a + 1)(b + 1)(c + 1)]2 ≥ 64abc = 64.1 = 82. Vậy (a + 1)(b + 1)(c + 1) ≥ 8. 10. a) Ta cĩ : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)2 ≥ 0, nên (a + b) 2 ≤ 2(a2 + b2). b) Xét : (a + b + c)2 + (a – b)2 + (a – c)2 + (b – c)2. Khai triển và rút gọn, ta được : Sách giải – Người thầy của bạn 6 3(a2 + b2 + c2). Vậy : (a + b + c)2 ≤ 3(a2 + b2 + c2). 11. a) 4 2x 3 1 x 3x 4 x 2x 3 1 x 3 2x 3 x 1 x 2 x 2 b) x2 – 4x ≤ 5 (x – 2)2 ≤ 33 | x – 2 | ≤ 3 -3 ≤ x – 2 ≤ 3 -1 ≤ x ≤ 5. c) 2x(2x – 1) ≤ 2x – 1 (2x – 1)2 ≤ 0. Nhưng (2x – 1)2 ≥ 0, nên chỉ cĩ thể : 2x – 1 = 0 Vậy : x = ½ . 12. Viết đẳng thức đã cho dưới dạng : a2 + b2 + c2 + d2 – ab – ac – ad = 0 (1). Nhân hai vế của (1) với 4 rồi đưa về dạng : a2 + (a – 2b)2 + (a – 2c)2 + (a – 2d)2 = 0 (2). Do đĩ ta cĩ : a = a – 2b = a – 2c = a – 2d = 0 . Suy ra : a = b = c = d = 0. 13. 2M = (a + b – 2)2 + (a – 1)2 + (b – 1)2 + 2.1998 ≥ 2.1998 M ≥ 1998. Dấu “ = “ xảy ra khi cĩ đồng thời : a b 2 0 a 1 0 b 1 0 Vậy min M = 1998 a = b = 1. 14. Giải tương tự bài 13. 15. Đưa đẳng thức đã cho về dạng : (x – 1)2 + 4(y – 1)2 + (x – 3)2 + 1 = 0. 16. 22 1 1 1 1 A . max A= x 2 x 4x 9 5 5x 2 5 . 17. a) 7 15 9 16 3 4 7 . Vậy 7 15 < 7 b) 17 5 1 16 4 1 4 2 1 7 49 45 . c) 23 2 19 23 2 16 23 2.4 5 25 27 3 3 3 . d) Giả sử 2 2 3 2 2 3 3 2 2 3 3 2 2 3 18 12 18 12 . Bất đẳng thức cuối cùng đúng, nên : 3 2 2 3 . 18. Các số đĩ cĩ thể là 1,42 và 2 3 2 Sách giải – Người thầy của bạn 7 19. Viết lại phương trình dưới dạng : 2 2 23(x 1) 4 5(x 1) 16 6 (x 1) . Vế trái của phương trình khơng nhỏ hơn 6, cịn vế phải khơng lớn hơn 6. Vậy đẳng thức chỉ xảy ra khi cả hai vế đều bằng 6, suy ra x = -1. 20. Bất đẳng thức Cauchy a b ab 2 viết lại dưới dạng 2 a b ab 2 (*) (a, b ≥ 0). Áp dụng bất dẳng thức Cauchy dưới dạng (*) với hai số dương 2x và xy ta được : 2 2x xy 2x.xy 4 2 Dấu “ = “ xảy ra khi : 2x = xy = 4 : 2 tức là khi x = 1, y = 2. max A = 2 x = 2, y = 2. 21. Bất đẳng thức Cauchy viết lại dưới dạng : 1 2 a bab . Áp dụng ta cĩ S > 1998 2. 1999 . 22. Chứng minh như bài 1. 23. a) 2 2 2x y x y 2xy (x y) 2 0 y x xy xy . Vậy x y 2 y x b) Ta cĩ : 2 2 2 2 2 2 2 2 x y x y x y x y x y A 2 y x y x y x y x y x . Theo câu a : 2 22 2 2 2 x y x y x y A 2 2 1 1 0 y x y x y x c) Từ câu b suy ra : 4 4 2 2 4 4 2 2 x y x y 0 y x y x . Vì x y 2 y x (câu a). Do đĩ : 4 4 2 2 4 4 2 2 x y x y x y 2 y x y x y x . 24. a) Giả sử 1 2 = m (m : số hữu tỉ) 2 = m2 – 1 2 là số hữu tỉ (vơ lí) b) Giả sử m + 3 n = a (a : số hữu tỉ) 3 n = a – m 3 = n(a – m) 3 là số hữu tỉ, vơ lí. 25. Cĩ, chẳng hạn 2 (5 2) 5 Sách giải – Người thầy của bạn 8 26. Đặt 2 2 2 2 2 x y x y a 2 a y x y x . Dễ dàng chứng minh 2 2 2 2 x y 2 y x nên a2 ≥ 4, do đĩ | a | ≥ 2 (1). Bất đẳng thức phải chứng minh tương đương với : a2 – 2 + 4 ≥ 3a a2 – 3a + 2 ≥ 0 (a – 1)(a – 2) ≥0 (2) Từ (1) suy ra a ≥ 2 hoặc a ≤ -2. Nếu a ≥ 2 thì (2) đúng. Nếu a ≤ -2 thì (2) cũng đúng. Bài tốn được chứng minh. 27. Bất đẳng thức phải chứng minh tương đương với : 4 2 4 2 4 2 2 2 2 2 2 2 x z y x z x x z y x z y xyz 0 x y z . Cần chứng minh tử khơng âm, tức là : x3z2(x – y) + y3x2(y – z) + z3y2(z – x) ≥ 0. (1) Biểu thức khơng đổi khi hốn vị vịng x y z x nên cĩ thể giả sử x là số lớn nhất. Xét hai trường hợp : a) x ≥ y ≥ z > 0. Tách z – x ở (1) thành – (x – y + y – z), (1) tương đương với : x3z2(x – y) + y3x2(y – z) – z3y2(x – y) – z3y2(y – z) ≥ 0 z2(x – y)(x3 – y2z) + y2(y – z)(yx2 – z3) ≥ 0 Dễ thấy x – y ≥ 0 , x3 – y2z ≥ 0 , y – z ≥ 0 , yx2 – z3 ≥ 0 nên bất đẳng thức trên đúng. b) x ≥ z ≥ y > 0. Tách x – y ở (1) thành x – z + z – y , (1) tương đương với : x3z2(x – z) + x3z2(z – y) – y3x2(z – y) – z3y2(x – z) ≥ 0 z2(x – z)(x3 – zy2) + x2(xz2 – y3)(z – y) ≥ 0 Dễ thấy bất đẳng thức trên dúng. Cách khác : Biến đổi bất đẳng thức phải chứng minh tương đương với : 2 2 2 x y z x y z 1 1 1 3 y z x y z x . 28. Chứng minh bằng phản chứng. Giả sử tổng của số hữu tỉ a với số vơ tỉ b là số hữu tỉ c. Ta cĩ : b = c – a. Ta thấy, hiệu của hai số hữu tỉ c và a là số hữu tỉ, nên b là số hữu tỉ, trái với giả thiết. Vậy c phải là số vơ tỉ. 29. a) Ta cĩ : (a + b)2 + (a – b)2 = 2(a2 + b2) (a + b)2 ≤ 2(a2 + b2). Sách giải – Người thầy của bạn 9 b) Xét : (a + b + c)2 + (a – b)2 + (a – c)2 + (b – c)2. Khai triển và rút gọn ta được : 3(a2 + b2 + c2). Vậy : (a + b + c)2 ≤ 3(a2 + b2 + c2) c) Tương tự như câu b 30. Giả sử a + b > 2 (a + b)3 > 8 a3 + b3 + 3ab(a + b) > 8 2 + 3ab(a + b) > 8 ab(a + b) > 2 ab(a + b) > a3 + b3. Chia hai vế cho số dương a + b : ab > a2 – ab + b2 (a – b)2 < 0, vơ lí. Vậy a + b ≤ 2. 31. Cách 1: Ta cĩ : x ≤ x ; y ≤ y nên x + y ≤ x + y. Suy ra x + y là số nguyên khơng vượt quá x + y (1). Theo định nghĩa phần nguyên, x y là số nguyên lớn nhất khơng vượt quá x + y (2). Từ (1) và (2) suy ra : x + y ≤ x y . Cách 2 : Theo định nghĩa phần nguyên : 0 ≤ x - x < 1 ; 0 ≤ y - y < 1. Suy ra : 0 ≤ (x + y) – ( x + y ) < 2. Xét hai trường hợp : - Nếu 0 ≤ (x + y) – ( x + y ) < 1 thì x y = x + y (1) - Nếu 1 ≤ (x + y) – ( x + y ) < 2 thì 0 ≤ (x + y) – ( x + y + 1) < 1 nên x y = x + y + 1 (2). Trong cả hai trường hợp ta đều cĩ : x + y ≤ x y 32. Ta cĩ x2 – 6x + 17 = (x – 3)2 + 8 ≥ 8 nên tử và mẫu của A là các số dương , suy ra A > 0 do đĩ : A lớn nhất 1 A nhỏ nhất x2 – 6x + 17 nhỏ nhất. Vậy max A = 1 8 x = 3. 33. Khơng được dùng phép hốn vị vịng quanh x y z x và giả sử x ≥ y ≥ z. Cách 1 : Áp dụng bất đẳng thức Cauchy cho 3 số dương x, y, z : 3 x y z x y z A 3 . . 3 y z x y z x Do đĩ x y z x y z min 3 x y z y z x y z x Sách giải – Người thầy của bạn 10 Cách 2 : Ta cĩ : x y z x y y z y y z x y x z x x . Ta đã cĩ x y 2 y x (do x, y > 0) nên để chứng minh x y z 3 y z x ta chỉ cần chứng minh : y z y 1 z x x (1) (1) xy + z2 – yz ≥ xz (nhân hai vế với số dương xz) xy + z2 – yz – xz ≥ 0 y(x – z) – z(x – z) ≥ 0 (x – z)(y – z) ≥ 0 (2) (2) đúng với giả thiết rằng z là số nhỏ nhất trong 3 số x, y, z, do đĩ (1) đúng. Từ đĩ tìm được giá trị nhỏ nhất của x y z y z x . 34. Ta cĩ x + y = 4 x2 + 2xy + y2 = 16. Ta lại cĩ (x – y)2 ≥ 0 x2 – 2xy + y2 ≥ 0. Từ đĩ suy ra 2(x2 + y2) ≥ 16 x2 + y2 ≥ 8. min A = 8 khi và chỉ khi x = y = 2. 35. Áp dụng bất đẳng thức Cauchy cho ba số khơng âm : 1 = x + y + z ≥ 3. 3 xyz (1) 2 = (x + y) + (y + z) + (z + x) ≥ 3. 3 (x y)(y z)(z x) (2) Nhân từng vế của (1) với (2) (do hai vế đều khơng âm) : 2 ≥ 9. 3 A A ≤ 3 2 9 max A = 3 2 9 khi và chỉ khi x = y = z = 1 3 . 36. a) Cĩ thể. b, c) Khơng thể. 37. Hiệu của vế trái và vế phải bằng (a – b)2(a + b). 38. Áp dụng bất đẳng thức 2 1 4 xy (x y) với x, y > 0 : 2 2 2 2 2 a c a ad bc c 4(a ad bc c ) b c d a (b c)(a d) (a b c d) (1) Tương tự 2 2 2 b d 4(b ab cd d ) c d a b (a b c d) (2) Cộng (1) với (2) 2 2 2 2 2 a b c d 4(a b c d ad bc ab cd) b c c d d a a b (a b c d) = 4B Sách giải – Người thầy của bạn 11 Cần chứng minh B ≥ 1 2 , bất đẳng thức này tương đương với : 2B ≥ 1 2(a2 + b2 + c2 + d2 + ad + bc + ab + cd) ≥ (a + b + c + d)2 a2 + b2 + c2 + d2 – 2ac – 2bd ≥ 0 (a – c)2 + (b – d)2 ≥ 0 : đúng. 39. - Nếu 0 ≤ x - x < ½ thì 0 ≤ 2x - 2 x < 1 nên 2x = 2 x . - Nếu ½ ≤ x - x < 1 thì 1 ≤ 2x - 2 x < 2 0 ≤ 2x – (2 x + 1) < 1 2x = 2 x + 1 40. Ta sẽ chứng minh tồn tại các số tự nhiên m, p sao cho : mchữ số 0 96000...00 ≤ a + 15p < mchữ số 0 97000...00 Tức là 96 ≤ m m a 15p 10 10 < 97 (1). Gọi a + 15 là số cĩ k chữ số : 10k – 1 ≤ a + 15 < 10k k k 1 a 15 1 10 10 10 (2). Đặt n k k a 15p x 10 10 . Theo (2) ta cĩ x1 < 1 và k 15 10 < 1. Cho n nhận lần lượt các giá trị 2, 3, 4, , các giá trị của xn tăng dần, mỗi lần tăng khơng quá 1 đơn vị, khi đĩ nx sẽ trải qua các giá trị 1, 2, 3, Đến một lúc nào đĩ ta cĩ px = 96. Khi đĩ 96 ≤ xp < 97 tức là 96 ≤ k k a 15p 10 10 < 97. Bất đẳng thức (1) được chứng minh. 42. a) Do hai vế của bất đẳng thức khơng âm nên ta cĩ : | A + B | ≤ | A | + | B | | A + B |2 ≤ ( | A | + | B | )2 A2 + B2 + 2AB ≤ A2 + B2 + 2| AB | AB ≤ | AB | (bất đẳng thức đúng) Dấu “ = “ xảy ra khi AB ≥ 0. b) Ta cĩ : M = | x + 2 | + | x – 3 | = | x + 2 | + | 3 – x | ≥ | x + 2 + 3 – x | = 5. Dấu “ = “ xảy ra khi và chỉ khi (x + 2)(3 – x) ≥ 0 -2 ≤ x ≤ 3 (lập bảng xét dấu) Vậy min M = 5 -2 ≤ x ≤ 3. c) Phương trình đã cho | 2x + 5 | + | x – 4 | = | x + 9 | = | 2x + 5 + 4 – x | (2x + 5)(4 – x) ≥ 0 -5/2 ≤ x ≤ 4 Sách giải – Người thầy của bạn 12 43. Điều kiện tồn tại của phương trình : x2 – 4x – 5 ≥ 0 x 1 x 5 Đặt ẩn phụ 2x 4x 5 y 0 , ta được : 2y2 – 3y – 2 = 0 (y – 2)(2y + 1) = 0. 45. Vơ nghiệm 46. Điều kiện tồn tại của x là x ≥ 0. Do đĩ : A = x + x ≥ 0 min A = 0 x = 0. 47. Điều kiện : x ≤ 3. Đặt 3 x = y ≥ 0, ta cĩ : y2 = 3 – x x = 3 – y2. B = 3 – y2 + y = - (y – ½ )2 + 13 4 ≤ 13 4 . max B = 13 4 y = ½ x = 11 4 . --- The end ---
Tài liệu đính kèm: