Tuyển chọn đề thi học sinh giỏi Toán 7

doc 90 trang Người đăng tuanhung Lượt xem 1137Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Tuyển chọn đề thi học sinh giỏi Toán 7", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tuyển chọn đề thi học sinh giỏi Toán 7
Đề số 1
Thời gian làm bài: 120 phút
Câu1: (2 điểm)
 Cho dãy tỉ số bằng nhau: 
 Tìm giá trị biểu thức: M= 
Câu2: (1 điểm) .
 Cho S =.
 Chứng minh rằng S không phải là số chính phương.
Câu3: (2 điểm)
 Một ô tô chạy từ A đến B với vận tốc 65 km/h, cùng lúc đó một xe máy chạy từ B đến A với vận tốc 40 km/h. Biết khoảng cách AB là 540 km và M là trung điểm của AB. Hỏi sau khi khởi hành bao lâu thì ôtô cách M một khoảng bằng 1/2 khoảng cách từ xe máy đến M.
Câu4: (2 điểm)
 Cho tam giác ABC, O là điểm nằm trong tam giác.
	a. Chứng minh rằng: 
	b. Biết và tia BO là tia phân giác của góc B. Chứng minh rằng: Tia CO là tia phân giác của góc C.
Câu 5: (1,5điểm).
 Cho 9 đường thẳng trong đó không có 2 đường thẳng nào song song. CMR ít nhất cũng có 2 đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 200.
Câu 6: (1,5điểm).
 Khi chơi cá ngựa, thay vì gieo 1 con súc sắc, ta gieo cả hai con súc sắc cùng một lúc thì điểm thấp nhất là 2, cao nhất là 12. các điểm khác là 3; 4; 5 ;6 11. Hãy lập bảng tần số về khả năng xuất hiện mỗi loại điểm nói trên? Tính tần xuất của mỗi loại điểm đó.
***** Hết ***** 
Hướng dẫn giải đề số 1.
Câu 1:
	Mỗi tỉ số đã cho đều bớt đi 1 ta được:
=
	+,	Nếu a+b+c+d 0 	thì 	a = b = c = d lúc đó M = 1+1+1+1=4
	+,	Nếu a+b+c+d = 0 	thì 	a+b = - (c+d); b+c = - (d+a); c+d = - (a+b);
 d+a = -(b+c), lúc đó M = (-1) + (-1) + (-1) + (-1) = -4.
Câu 2: S = (100a+10b+c)+(100b+10c+a)+ (100c+10a+b) = 111(a+b+c) = 37.3(a+b+c).
Vì 0 S không thể là số chính phương.
Câu 3:
A
M
B
Quãng đường AB dài 540 Km; nửa quảng dường AB dài 270 Km. Gọi quãng đường ô tô và xe máy đã đi là S1, S2. Trong cùng 1 thời gian thì quãng đường tỉ lệ thuận với vận tốc do đó (t chính là thời gian cần tìm).
t= 
Vậy sau khi khởi hành 3 giờ thì ô tô cách M một khoảng bằng 1/2 khoảng cách từ xe máy đến M.
Câu 4:
a, Tia CO cắt AB tại D.
A
B
C
D
O
+, Xét BOD có là góc ngoài nên = 
+, Xét ADC có góc D1 là góc ngoài nên 
Vậy =+
b, Nếu thì = 
Xét BOC có:
=>tia CO là tia phân giác của góc C.
Câu 5:
Lấy điểm O tuỳ ý.Qua O vẽ 9 đường thẳng lần lượt song song với 9 đường thẳng đã cho. 9 đường thẳng qua O tạo thành 18 góc không có điểm trong chung, mỗi góc này tương ứng bằng góc giữa hai đường thẳng trong số 9 đương thẳng đã cho. Tổng số đo của 18 góc đỉnh O là 3600 do đó ít nhất có 1 góc không nhỏ hơn 3600 : 18 = 200, từ đó suy ra ít nhất cũng có hai đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 200.
Câu 6:
Tổng số điểm ghi ở hai mặt trên của hai con súc sắc có thể là:
2 = 1+1
3 = 1+2 = 2+1
4 = 1+3 =2 +2 = 3+1
5 = 1+4 =2+3=3+2=4+1.
6=1+5=2+4=3+3=4+2=5+1
7=1+6=2+5=3+4= 4+3=5+2=-6+1
8= 2+6=3+5=4+4=5+3=6+2
9=3+6=4+5=5+4=6+3
10=4+6=5+5=6+4
11=5+6=6+5
12=6+6.
	Như vậy tổng số 7 điểm có khả năng xảy ra nhất tới 16,7%
***** Hết ***** 
Đề số 2.
Thời gian làm bài: 120 phút
Câu 1:	Tìm các số a,b,c biết rằng: ab =c ;bc= 4a; ac=9b
Câu 2: 	Tìm số nguyên x thoả mãn:
	a,ữ5x-3ữ 4	c, ữ4- xữ +2x =3
Câu3: 	Tìm giá trị nhỏ nhất của biểu thức: 	A =ữxữ +ữ8 -xữ
Câu 4:	Biết rằng :12+22+33+...+102= 385. Tính tổng : S= 22+ 42+...+202
Câu 5 :
Cho tam giác ABC ,trung tuyến AM .Gọi I là trung điểm của đoạn thẳng AM, BI cắt cạnh AC tại D.
	a. Chứng minh AC=3 AD
	b. Chứng minh ID =1/4BD
 ***** Hết ***** 
Đáp án đề số 2
Câu1: Nhân từng vế bất đẳng thức ta được : (abc)2=36abc
	+, Nếu một trong các số a,b,c bằng 0 thì 2 số còn lại cũng bằng 0
	+,Nếu cả 3số a,b,c khác 0 thì chia 2 vế cho abc ta được abc=36
	+, Từ abc =36 và ab=c ta được c2=36 nên c=6;c=-6
	+, Từ abc =36 và bc=4a ta được 4a2=36 nên a=3; a=-3
	+, Từ abc =36 và ab=9b ta được 9b2=36 nên b=2; b=-2
	-, Nếu c = 6 thì avà b cùng dấu nên a=3, b=2 hoặc a=-3 , b=-2
	-, Nếu c = -6 thì avà b trái dấu nên a=3 b=-2 hoặc a=-3 b=2
	Tóm lại có 5 bộ số (a,b,c) thoã mãn bài toán
	(0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)
Câu 2. (3đ)
a.(1đ)	ụ5x-3ụ -2<5x-3<2 (0,5đ)
 1/5<x<1 (0,5đ)
b.(1đ)	ụ3x+1ụ>4=> 3x+1>4hoặc 3x+1<-4 (0,5đ)
	*Nếu 3x+1>4=> x>1
	*Nếu 3x+1 x<-5/3
	Vậy x>1 hoặc x<-5/3 (0,5đ)
c. (1đ)	ụ4-xụ+2x=3 (1)
	* 4-x³0 => xÊ4 (0,25đ)
	(1)4-x+2x=3 => x=-1( thoả mãn đk) (0,25đ)
	*4-x x>4 (0,25đ)
	(1) x-4+2x=3 x=7/3 (loại) (0,25đ)
Câu3. (1đ)	áp dụng ụa+bụ Êụaụ+ụbụTa có
	A=ụxụ+ụ8-xụ³ụx+8-xụ=8
	MinA =8 x(8-x) ³0 (0,25đ)
	*=>0ÊxÊ8 (0,25đ)
	*=> không thoã mãn(0,25đ)
	Vậy minA=8 khi 0ÊxÊ8(0,25đ)
Câu4. 	Ta có S=(2.1)2+(2.2)2+...+ (2.10)2(0,5đ) =22.12+22.22+...+22.102
	=22(12+22+...+102) =22.385=1540(0,5đ)
A
B
M
C
D
E
Câu5.(3đ)
Chứng minh: a (1,5đ)
Gọi E là trung điểm CD trong tam giác BCD có ME là đường trung bình => ME//BD(0,25đ)
Trong tam giác MAE có I là trung điểm của cạnh AM (gt) mà ID//ME(gt)
Nên D là trung điểm của AE => AD=DE (1)(0,5đ)
Vì E là trung điểm của DC => DE=EC (2) (0,5đ)
So sánh (1)và (2) => AD=DE=EC=> AC= 3AD(0,25đ)
b.(1đ)
Trong tam giác MAE ,ID là đường trung bình (theo a) => ID=1/2ME (1) (0,25đ)
Trong tam giác BCD; ME là Đường trung bình => ME=1/2BD (2)(0,5đ)
So sánh (1) và (2) => ID =1/4 BD (0,25đ)
***** Hết ***** 
Đề số 3
Thời gian làm bài: 120 phút
Câu 1 . ( 2đ) 	Cho: . Chứng minh: .
Câu 2. (1đ).	Tìm A biết rằng: A = .
Câu 3. (2đ).	Tìm để Aẻ Z và tìm giá trị đó.
	a). A = . 	b). A = .
Câu 4. (2đ). Tìm x, biết:
	a)	 = 5 . 	b).	 ( x+ 2) 2 = 81. 	c). 5 x + 5 x+ 2 = 650
Câu 5. (3đ).	Cho r ABC vuông cân tại A, trung tuyến AM . E ẻ BC, BH^ AE, CK ^ AE, (H,K ẻ AE). Chứng minh r MHK vuông cân.
***** Hết ***** 
Đáp án đề số 3
Câu 1. 	Ta có (1) Ta lại có (2)
	Từ (1) và(2) => .
Câu 2. A = .= .
	Nếu a+b+c ạ 0 => A = .
	Nếu a+b+c = 0 => A = -1.
Câu 3. a). A = 1 + để A ẻ Z thì x- 2 là ước của 5.
	=> x – 2 = (± 1; ±5)
	* x = 3 => A = 6	 	* x = 7 => A = 2
	* x = 1 => A = - 4	 	* x = -3 => A = 0 
b) A = - 2 để A ẻ Z thì x+ 3 là ước của 7.
	=> x + 3 = (± 1; ±7)
	* x = -2 => A = 5	 * x = 4 => A = -1
	* x = -4 => A = - 9	 	* x = -10 => A = -3 .
Câu 4. 	 a). x = 8 hoặc - 2 
	b). x = 7 hoặc - 11
	c). x = 2.
Câu 5. ( Tự vẽ hình)
r MHK là r ƒcân tại M .
Thật vậy: r ACK = r BAH. (gcg) => AK = BH .
r AMK = r BMH (g.c.g) => MK = MH.
Vậy: r MHK cân tại M .
***** Hết ***** 
Đề số 4
Thời gian làm bài : 120 phút.
Câu 1 : ( 3 điểm).
	1. Ba đường cao của tam giác ABC có độ dài là 4,12 ,a . Biết rằng a là một số tự nhiên. Tìm a ?
	2. Chứng minh rằng từ tỉ lệ thức ( a,b,c ,dạ 0, aạb, cạd) ta suy ra được các tỉ lệ thức:
	a) .	b) .
Câu 2: ( 1 điểm).	Tìm số nguyên x sao cho: ( x2 –1)( x2 –4)( x2 –7)(x2 –10) < 0.
Câu 3: (2 điểm).
	Tìm giá trị nhỏ nhất của: A = | x-a| + | x-b| + |x-c| + | x-d| với a<b<c<d.
Câu 4: ( 2 điểm). Cho hình vẽ.
	a, Biết Ax // Cy. so sánh góc ABC với góc A+ góc C.
	b, góc ABC = góc A + góc C. Chứng minh Ax // Cy. 
x
A
B
y
C
Câu 5: (2 điểm) 
 Từ điểm O tùy ý trong tam giác ABC, kẻ OM, ON , OP lần lượt vuông góc với các cạnh BC, CA, Ab. Chứng minh rằng:
AN2 + BP2 + CM2 = AP2 + BM2 + CN2
***** Hết ***** 
Đáp án đề số 4
Câu 1: Gọi x, y, z là độ dài 3 cạnh tương ứng với các đường cao bằng 4, 12, a. 
	Ta có: 4x = 12y = az = 2S
	ị x= S/2 ; y = S/6; z = 2S/a (0,5 điẻm)
	Do x-y < z< x+y nên
	 (0,5 điểm)
	ị 3, a , 6 Do a ẻ N nên a=4 hoặc a= 5. (0,5 điểm)
2. a. Từ ị (0,75 điểm)
b. ị (0,75 điểm)
Câu 2: Vì tích của 4 số : x2 – 1 ; x2 – 4; x2 – 7; x2 – 10 là số âm nên phải có 1 số âm hoặc 3 số âm.
Ta có : x2 – 10< x2 – 7< x2 – 4< x2 – 1. Xét 2 trường hợp:
+ Có 1 số âm: x2 – 10 < x2 – 7 ị x2 – 10 < 0 < x2 – 7
ị 7< x2 < 10 ị x2 =9 ( do x ẻ Z ) ị x = ± 3. ( 0,5 điểm)
+ có 3 số âm; 1 số dương.
x2 – 4< 0< x2 – 1 ị 1 < x2 < 4
do xẻ Z nên không tồn tại x.
Vậy x = ± 3 (0,5 điểm)
Câu 3: Trước tiên tìm GTNN B = |x-a| + | x-b| với a<b.
Ta có Min B = b – a ( 0,5 điểm)
Với A = | x-a| + | x-b| + |x-c| + | x-d|
= [| x-a| + | x-d|] + [|x-c| + | x-b|]
Ta có : Min [| x-a| + | x-d|] =d-a khi a[x[d
Min [|x-c| + | x-b|] = c – b khi b[ x [ c ( 0,5 điểm)
Vậy A min = d-a + c – b khi b[ x [ c ( 0, 5 điểm)
Câu 4: ( 2 điểm)
A, Vẽ Bm // Ax sao cho Bm nằm trong góc ABC ị Bm // Cy (0, 5 điểm)
Do đó góc ABm = góc A; Góc CBm = gócC
ị ABm + CBm = A + C tức là ABC = A + C ( 0, 5 điểm)
b. Vẽ tia Bm sao cho ABm và A là 2 góc so le trong và ABM = A ị Ax// Bm (1)
CBm = C ị Cy // Bm(2)
Từ (1) và (2) ị Ax // By
Câu 5: áp dụng định lí Pi ta go vào tam giác vuông NOA và NOC ta có:
AN2 =OA2 – ON2; CN2 = OC2 – ON2 ị CN2 – AN2 = OC2 – OA2 (1) ( 0, 5 điểm)
Tương tự ta cũng có: AP2 - BP2 = OA2 – OB2 (2); MB2 – CM2 = OB2 – OC2 (3) ( 0, 5 điểm)
Từ (1); (2) và (3) ta có: AN2 + BP2 + CM2 = AP2 + BM2 + CN2 ( 0, 5 điểm).
***** Hết ***** 
Đề số 5
Thời gian làm bài: 120 phút
Câu 1(2đ):
	a) Tính: A = 1 + 
	b) Tìm n Z sao cho : 2n - 3 n + 1
Câu 2 (2đ):
	a) Tìm x biết: 3x - = 2
	b) Tìm x, y, z biết: 3(x-1) = 2(y-2), 4(y-2) = 3(z-3) và 2x+3y-z = 50.
Câu 3(2đ): 	Ba phân số có tổng bằng , các tử của chúng tỉ lệ với 3; 4; 5, các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó.
Câu 4(3đ):	Cho tam giác ABC cân đỉnh A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là trung điểm của DE. Chứng minh ba điểm B, I, C thẳng hàng.
Câu 5(1đ):	Tìm x, y thuộc Z biết: 2x + = 
***** Hết ***** 
Hướng dẫn chấm đề số 5:
Câu 1(2đ):
a) A = 2 - 	(1đ )
b) 	(0,5đ )
n + 1
-1
1
-5
5
n
-2
0
-6
4
	(0,5đ )
Câu 2(2đ):
a) Nếu x thì : 3x - 2x - 1 = 2 => x = 3 ( thảo mãn )	(0,5đ)
Nếu x x = 1/5 ( loại )	(0,5đ)
Vậy: x = 3
b) => và 2x + 3y - z = 50	(0,5đ)
=> x = 11, y = 17, z = 23.	(0,5đ)
Câu 3(2đ): Các phân số phải tìm là: a, b, c ta có : a + b + c = 
và a : b : c = (1đ) => 	(1đ)
Câu 4(3đ):
Kẻ DF // AC ( F thuộc BC )	(0,5đ )
=> DF = BD = CE (0,5đ ) => IDF = IFC ( c.g.c ) (1đ )
=> góc DIF = góc EIC => F, I, C thẳng hàng => B, I, C thẳng hàng (1đ)
Câu 5(1đ):
=> 
=> (x ; y ) cần tìm là ( 0 ; 7 )
***** Hết ***** 
Đề số 6
Thời gian làm bài: 120’.
Câu 1: Tính :
	a) A = .
	b) B = 1+ 
Câu 2:
	a) So sánh: và .
	b) Chứng minh rằng: .
Câu 3:
 Tìm số có 3 chữ số biết rằng số đó là bội của 18 và các chữ số của nó tỉ lệ theo 1:2:3
Câu 4
 Cho tam giác ABC có góc B và góc C nhỏ hơn 900 . Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE ( trong đó góc ABD và góc ACE đều bằng 900 ), vẽ DI và EK cùng vuông góc với đường thẳng BC. Chứng minh rằng:
	a. BI=CK; EK = HC; b. BC = DI + EK.
Câu 5:	Tìm giá trị nhỏ nhất của biểu thức : A = 
***** Hết ***** 
Đáp án đề số 6:
Câu 1: a) Ta có: ; ; ; ;
Vậy A = 1+
b) A = 1+ =
= 1+ 
= = 115.
Câu 2: a) Ta có: ; nên hay 
Còn < 10 .Do đó: 
b) ; ; ..; .
Vậy: 
Câu 3: Gọi a,b,của là các chữ số của số có ba chữ số cần tìm . Vì mỗi chữ số a,b,của không vượt quá 9 và ba chữ số a,b,của không thể đồng thời bằng 0 , vì khi đó ta không được số có ba chữ số nên: 1 Ê a+b+c Ê 27
Mặt khác số phải tìm là bội của 18 nên a+b+c =9 hoặc a+b+c = 18 hoặc a+b+c=17
Theo giả thiết, ta có: Do đó: ( a+b+c) chia hết cho 6
Nên : a+b+c =18 ị ị a=3; b=6 ; của =9
Vì số phải tìm chia hết cho 18 nênchữ số hàng đơn vị của nó phải là số chẵn.
Vậy các số phải tìm là: 396; 936.
Câu 4:
a) Vẽ AH ^ BC; ( H ẻBC) của DABC
+ hai tam giác vuông AHB và BID có:
BD= AB (gt)
Góc A1= góc B1( cùng phụ với góc B2)
ị DAHB= DBID ( cạnh huyền, góc nhọn)
ịAH^ BI (1) và DI= BH
+ Xét hai tam giác vuông AHC và CKE có: Góc A2= góc C1( cùng phụ với góc C2)
AC=CE(gt)
ị DAHC= DCKB ( cạnh huyền, góc nhọn) ịAH= CK (2)
từ (1) và (2) ị BI= CK và EK = HC.
b) Ta có: DI=BH ( Chứng minh trên)
tương tự: EK = HC
Từ đó BC= BH +Hc= DI + EK.
Câu 5: Ta có:
A = =
Vậy biểu thức đã cho đạt giá trị nhỏ nhất là 2000 khi x-2001 và 1-x cùng dấu, tức là :
1 Ê x Ê 2001
biểu điểm :
Câu 1: 2 điểm . a. 1 điểm b. 1 điểm
Câu 2: 2 điểm : a. 1 điểm b . 1 điểm .
Câu 3 : 1,5 điểm
Câu 4: 3 điểm : a. 2 điểm ; b. 1 điểm .
Câu 5 : 1,5 điểm .
***** Hết ***** 
Đề số 7
Thời gian làm bài: 120 phút 
Câu 1: (1,5 đ)Tìm x biết: 
	a, ++++=0
	b, 
Câu2:(3 điểm)
	a, Tính tổng:
	b, CMR: 
	c, Chứng minh rằng mọi số nguyên dương n thì: 3n+2 – 2n+2 +3n – 2n chia hết cho 10
Câu3: (2 điểm)	Độ dài ba cạnh của một tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao tương ứng ba cạnh đó tỉ lệ với số nào?
Câu 4: (2,5điểm)	Cho tam giác ABC có góchai đường phân giác AP và CQ của tam giác cắt nhau tại I.
	a, Tính góc AIC
	b, CM : IP = IQ
Câu5: (1 điểm)	Cho . Tìm số nguyên n để B có giá trị lớn nhất.
***** Hết ***** 
Đáp án đề số 7
Câu1:
a, (1) (0,5 đ )
...... 
	(0,5đ )
b,	a.Tìm x, biết: ẵ5x - 3ẵ - x = 7 (1)	 (0,25 đ)
ĐK: x -7 	(0,25 đ)
. 	(0,25 đ)
Vậy có hai giá trị x thỏa mãn điều kiện đầu bài.	x1 = 5/2 ; x2= - 2/3 (0,25đ).
Câu 2:a, ; (0.5đ) (0,5đ)
b,	(0,5đ)
................... (0,5đ)
c, Ta có (0,5đ)
................. (0,5đ)
Câu 3: Gọi độ dài 3 cạnh là a , b, c, 3 chiều cao tương ứng là x, y, z, diện tích S ( 0,5đ )
 (0,5đ) (0,5đ)
 vậy x, y, z tỉ lệ với 6 ; 4 ; 3 (0,5đ)
Câu4: 	GT; KL; Hình vẽ (0,5đ)
a,	 Góc AIC = 1200 (1 đ )
b, 	Lấy : AH = AQ .............. 	(1 đ )
Câu5: 	B ; LN NN
Vì đạt NN khi bằng 3 (0,5đ)
Dấu bằng xảy ra khi 
vậy B ; LN và (0,5đ)
Đề số 8
Thời gian : 120 phỳt
Câu 1 : (3đ) Tìm số hữu tỉ x, biết :
	a) = - 243 .
	b) 
	c) x - 2 = 0	(x)
Câu 2 : (3đ)
	a, Tìm số nguyên x và y biết : 
	b, Tìm số nguyên x để A có giá trị là 1 số nguyên biết : A = 	(x)
Câu 3 : (1đ)	Tìm x biết : 	2. - 2x = 14
Câu 4 : (3đ)
	a, Cho ABC có các góc A, B , C tỉ lệ với 7; 5; 3 . Các góc ngoài tương ứng tỉ lệ với các số nào .
	b, Cho ABC cân tại A và Â < 900 . Kẻ BD vuông góc với AC . Trên cạnh AB lấy điểm E sao cho : AE = AD . Chứng minh :
	1) DE // BC
	2) CE vuông góc với AB .
***** Hết ***** 
Đáp án đề số 8
Câu 1 : 3 điểm . Mỗi câu 1 điểm
(x-1) = (-3) x-1 = -3 x = -3+1 x = -2
(x+2)() = 0
 0 x+2 = 0 x = 2
x - 2 = 0 ()- 2 = 0 (- 2) = 0 = 0 x = 0
hoặc - 2 = 0 = 2 x = 4
Câu 2 : 3 điểm . Mỗi câu 1,5 điểm
a) 	, , 
x(1 - 2y) = 40 1-2y là ớc lẻ của 40 . Ước lẻ của 40 là : 1 ; 5 .
Đáp số : 	x = 40 ; y = 0
	x = -40 ; y = 1
	x = 8 ; y = -2
	x = -8 ; y = 3
b) Tìm xz để AZ. A= 
A nguyên khi nguyên Ư(4) = {-4 ; -2 ;-1; 1; 2; 4}
Các giá trị của x là : 1 ; 4; 16 ; 25 ; 49 .
Câu 3 : 1 điểm
2 - 2x = 14 = x + 7 (1)
ĐK: x -7 	(0,25 đ)
. 	(0,25 đ)
Vậy có hai giá trị x thỏa mãn điều kiện đầu bài.	x1 = 5/2 ; x2= - 2/3 (0,25đ).
 Câu4. 	(1.5 điểm)
Các góc A, B , C tỉ lệ với 7, 5, 3
A= 840 góc ngoài tại đỉnh A là 960
B = 600 góc ngoài tại đỉnh B là 1200
C = 360 góc ngoài tại đỉnh C là 1440
 Các góc ngoài tơng ứng tỉ lệ với 4 ; 5 ; 6
b)
1) AE = AD ADE cân
= (1) ABC cân 
= (2)
Từ (1) và (2) 
ED // BC
Xét EBC và DCB có BC chung (3)
(4)
BE = CD (5)
Từ (3), (4), (5) EBC = DCB (c.g.c)
 = 900 CE ^ AB .
***** Hết ***** 
Đề số 9
Thời gian làm bài:	120 phút
Bài1( 3 điểm)
	a, Tính: 	A = 
	b, Tính nhanh: (18.123 + 9.436.2 + 3.5310.6) : (1 + 4 +7 ++ 100 – 410)
Bài 2: ( 2điểm). Tìm 3 số nguyên dương sao cho tổng các nghịch đảo của chúng bằng 2.
Bài 3: (2 điểm). Cần bao nhiêu chữ số để đánh số trang một cuốn sách dày 234 trang.
Bài 4: ( 3 điểm) Cho ABC vuông tại B, đường cao BE Tìm số đo các góc nhọn của tam giác , biết EC – EA = AB.
=== = = = = Hết = = = = ===
Đáp án đề số 9
Bài 1: 3 điểm
a, Tính: 	A = 
= 
b, 1,5 điểm	Ta có:
+) 1 + 4 +7 ++ 100 = ( 1+100) + ( 4 + 97) +.+ ( 49+ 52) = 101 . 34 = 1434
	34 cặp
+) 1434 – 410 = 1024
+) ( 18 . 123 + 9 . 436 . 2 + 3 . 5310. 6 ) = 18 . ( 123 + 436 + 5310 )
= 18 . 5869 = 	105642
Vậy A = 105642 : 1024 103,17
Bài 2: 2 Điểm
Giọi số cần tìm là x, y, z. Số nhỏ là x , số lớn nhất là z. Ta có: x y z (1)
Theo giả thiết:	(2).	Do (1) nên z =
Vậy: x = 1. Thay vào (2) , được: 
Vậy y = 2. Từ đó z = 2. Ba số cần tìm là 1; 2; 2.
Bài 3: 	2 Điểm
Có 9 trang có 1 chữ số. Số trang có 2 chữ số là từ 10 đến 99 nên có tất cả 90 trang. Trang có 3 chữ số của cuốn sách là từ 100 đến 234, có tất cả 135 trang. Suy ra số các chữ số trong tất cả các trang là:
9 + 2 . 90 + 3. 135 = 9 + 180 + 405 = 594
Bài 4 : 3 Điểm
Trên tia EC lấy điểm D sao cho ED = EA.
Hai tam giác vuông ABE = DBE ( EA = ED, BE chung)
Suy ra BD = BA ; .
Theo giả thiết: EC – EA = A B
Vậy EC – ED = AB	Hay CD = AB	(2)
Từ (1) và (2) Suy ra: DC = BD.
Vẽ tia ID là phân giác của góc CBD ( I BC ).
Hai tam giác: CID và BID có :
ID là cạnh chung,
CD = BD ( Chứng minh trên).
 ( vì DI là phân giác của góc CDB )
Vậy CID = BID ( c . g . c) . Gọi là = 2 = 2 ( góc ngoài của BCD)
 mà ( Chứng minh trên) nên = 2 = 900 = 300 .
Do đó ; = 300 và = 600
***** Hết ***** 
Đề số 10
Thời gian làm bài 120 phút
Bài 1(2 điểm). Cho 
	a.Viết biểu thức A dưới dạng không có dấu giá trị tuyệt đối.
	b.Tìm giá trị nhỏ nhất của A.
Bài 2 ( 2 điểm)
	a.Chứng minh rằng : .
	b.Tìm số nguyên a để : là số nguyên.
Bài 3(2,5 điểm). Tìm n là số tự nhiên để : 
Bài 4(2 điểm)	Cho góc xOy cố định. Trên tia Ox lấy M, Oy lấy N sao cho OM + ON = m không đổi. Chứng minh : Đường trung trực của MN đi qua một điểm cố định.
Bài 5(1,5 điểm). Tìm đa thức bậc hai sao cho : .
	áp dụng tính tổng : S = 1 + 2 + 3 +  + n.
***** Hết ***** 
Hướng dẫn giải đề số 10
Bài 1.a. 	Xét 2 trường hợp :
	* ta được : A=7.
	* ta được : A = -2x-3.
b.	Xét hay A > 7. Vậy : Amin = 7 khi .
Bài 2. a. 	Đặt : A = 
	Ta có :
	* A < = = 
	* A > .
b.	 Ta có : = =
= là số nguyên
Khi đó (a + 3) là ước của 14 mà Ư(14) = .
Ta có : a = -2;- 4;- 1; - 5; 4 ; - 10; 11 ; -17.
Bài 3. Biến đổi :
 Để 
* n Ư(30) hay n {1, 2 , 3, 5 , 6 , 10 , 15 , 30}.
*
+
x
z
d
 d
m
n
i
y
m'
o
+
 n {1 , 3 , 6 , 10 , 15 , 30}.
-Thử từng trường hợp ta được : n = 1, 3, 10, 30 thoã mãn bài toán.
Bài 4.
-Trên Oy lấy M’ sao cho OM’ = m. Ta có :
N nằm giữa O, M’ và M’N = OM.
-Dựng d là trung trực của OM’ và Oz là
phân giác của góc xOy chúng cắt nhau tại D.
-
D thuộc trung trực của MN.
-Rõ ràng : D cố định. Vậy đường trung trực của MN đi qua D cố định.
Bài 5. -Dạng tổng quát của đa thức bậc hai là : (a0).
Ta có : .
Vậy đa thức cần tìm là : (c là hằng số).
áp dụng :
+ Với x = 1 ta có : 
+ Với x = 2 ta có : 
.
+ Với x = n ta có : 
S = 1+2+3++n = = .
Lưu ý : Học sinh giải cách khác đúng vẫn cho điểm tối đa. Bài hình không vẽ hình không chấm điểm.
***** Hết ***** 
Đề số 11
Thời gian làm bài: 120 phút
Câu 1: (2đ) Rút gọn A=
Câu 2 (2đ) Ba lớp 7A,7B,7C có 94 học sinh tham gia trồng cây. Mỗi học sinh lớp 7A trồng được 3 cây, Mỗi học sinh lớp 7B trồng được 4 cây, Mỗi học sinh lớp 7C trồng được 5 cây,. Hỏi mỗi lớp có bao nhiêu học sinh. Biết rằng số cây mỗi lớp trồng được đều như nhau.
Câu 3: (1,5đ) Chứng minh rằng là một số tự nhiên.
Câu 4 : (3đ) Cho góc xAy = 600 vẽ tia phân giác Az của góc đó . Từ một điểm B trên Ax vẽ đường thẳng song song với với Ay cắt Az tại C. vẽ Bh ^ Ay,CM ^Ay, BK ^ AC. Chứng minh rằng:
	a, K là trung điểm của AC.
	b, BH = 
	c, đều
Câu 5 (1,5 đ)	Trong một kỳ thi học sinh giỏi cấp Huyện, bốn bạn Nam, Bắc, Tây, Đông đoạt 4 giải 1,2,3,4 . Biết rằng mỗi câu trong 3 câu dưới đây đúng một nửa và sai 1 nửa:
	a, Tây đạt giải 1, Bắc đạt giải 2.
	b, Tây đạt giải 2, Đông đạt giải 3.
	c, Nam đạt giải 2, Đông đạt giải 4.
	Em hãy xác định thứ tự đúng của giải cho các bạn.
***** Hết ***** 
Đáp án đề số 11
Câu1 (làm đúng được 2 điểm)
Ta có: = = (0,25đ)
Điều kiện (x-2)(x+10) ạ 0 ị x ạ 2; x ạ -10 (0,5đ)
Mặt khác = x-2 nếu x>2
-x + 2 nếu x< 2 (0,25đ)
* Nếu x> 2 thì = = (0,5đ)
* Nếu x <2 thì .
 = = (điều kiện x ạ -10) (0,5đ)
Câu 2 (làm đúng được 2đ)
Gọi số học sinh đi trồng cây của 3 Lớp 7A,7B, 7C
theo thứ tự là x, y, z (x> 0; y >0 ; z >0)
Theo đề ra ta có
(0,5đ)
BCNN (3,4,5) = 60
Từ (2) ị == hay == (0,5đ)
áp dụng tính chất dãy tỷ số bằng nhau ta có :
== = = =2 (0,5đ)ị x= 40, y=30 và z =24 (0,5đ)
Số học sinh đi trồng cây của 3 lớp 7A, 7B, 7C lần lượt là 40, 30, 24.
Câu 3 (làm đúng cho 1,5đ)
Để là số tự nhiên Û 102006 + 53 9 (0,5đ)
Để 102006 + 53 9 Û 102006 + 53 có tổng các chữ số chia hết cho 9
mà 102006 + 53 = 1+ 0 +0 +.........+ 0 + 5+3 = 9 9
102006 + 53 9 hay là số tự nhiên (1đ)
Câu 4 (3đ)
Vẽ được hình, ghi GT, KL được 0,25đ
a, DABC có (Az là tia phân giác của)
 (Ay // BC, so le trong)
ị cân tại B
mà BK ^ AC ị BK là đường cao của D cân ABC
ị BK cũng là trung tuyến của D cân ABC (0,75đ)
hay K là trung điểm của AC
b, Xét của D cân ABH và D vuông BAK.
Có AB là cạng huyền (cạnh chung)
 Vì 
ị D vuông ABH = D vuông BAKị BH = AK mà AK = (1đ)
c, DAMC vuông tại M có AK = KC = AC/2 (1) ị MK là trung tuyến thuộc cạnh huyền ị KM = AC/2 (2)
Từ (10 và (2) ị KM = KC ị DKMC cân.
Mặt khác DAMC có 
ị DAMC đều (1đ)
Câu 5. Làm đúng câu 5 được 1,5đ
Xây dựng sơ đồ cây và giải bài toán
Đáp án : Tây đạt giải nhất, Nam giải nhì, Đông giải 3, Bắc giải 4
***** Hết ***** 
Đề số 12
Thời gian làm bài 120 phút
Câu 1: (2đ) Tìm x, biết:
	a) 	b) 	c) 	d) 
Câu 2: (2đ)
	a) Tính tổng S = 1+52+ 54+...+ 5200
	b) So sánh 230 + 330 + 430 và 3.2410
Câu 3: (2đ) Cho tam giác ABC có góc B bằng 600. Hai tia phân giác AM và CN của tam giác ABC cắt nhau tại I.
	a) Tính góc AIC
	b) Chứng minh IM = IN
Câu 4: (3đ) 	Cho M,N lần lượt là trung điểm của các cạnh AB và Ac của tam giác ABC. Các đường phân giác và phân giác ngoài của tam giác kẻ từ B cắt đường thẳng MN lần lượt tại D và E các tia AD và AE cắt đường thẳng BC theo thứ tự tại P và Q. Chứng minh:
	a) BD 
	b) B là trung điểm của PQ
	c) AB = DE
Câu 5: (1đ) 
 Với giá trị nguyên nào của x thì biểu thức A= Có giá trị lớn nhất? Tìm giá trị đó.
***** Hết ***** 
Đáp án đề số 12
Câu 1: (2đ)
a) Xét khoảng được x = 4,5 phù hợp 0,25 đ
Xét khoảng được x = -phù hợp 0,25 đ
b) Xét khoảng Được x > 4 0,2đ
Xét khoảng Được x < -1 0,2đ
Vậy x > 4 hoặc x < -1 0,1đ
c) Xét khoảng Ta có 3x - 1 7 Ta được 
Xét khoảng Ta có -3x + 17 
Ta được 
Vậy giá trị của x thoã mãn đề bài là 
Câu 2:
a) S = 1+25 + 252 +...+ 25100 0,3đ
 0,3đ
Vậy S = 0,1đ
b) 430= 230.230 = (23)10.(22)15 >810.315> (810.310)3 = 2410.3 0,8đ
Vậy 230+330+430> 3.224 0,2đ
Câu 3:
a) Hình a.
AB//EF vì có hai góc trong cùng phía bù nhau
EF//CD vì có hai góc trong cùng phía bù nhau
Vậy AB//CD
b) Hình b.
AB//EF Vì có cặp góc so le trong bằng nhau 0,4đ
CD//EF vì có cặp góc trong cùng phía bù nhau 0,4đ
Vậy AB//CD 0,2đ
Câu 4: (3đ)
a) MN//BC MD//BD D trung điểm AP 0,3 đ
BP vừa là phân giác vừa là trung tuyến nên cũng là đường cao BD AP 0,2đ
Tương tự ta chứng minh được BE AQ 0,5 đ
b) AD = DP
 (g.c.g) DP = BE BE = AD 0,5 đ
 0,3đ
BP = 2MD = 2ME = BQ
Vậy B là trung điểm của PQ 0,2đ
c) vuông ở B, BM là trung tuyến nên BM = ME 0,4đ
 vuông ở D có DM là trung tuyến nên DM = MA 0,4đ
DE = DM + ME = MA + MB 0,2đ
Câu 5: 1đ
A = A lớn nhất lớn nhất 0,3đ
Xét x > 4 thì < 0
Xét 4 0 a lớn nhất 4 - x nhỏ nhất x = 3 0,6đ
***** Hết ***** 
Đề số 13
Thời gian : 120 phỳt
Câu 1: ( 1,5 điểm) Tìm x, biết:
	a. - x = 15.	b. - x > 1.	c. 5.
Câu2: ( 2 điểm)
	a. Tính tổng: A= (- 7) + (-7)2 +  + (- 7)2006 + (- 7)2007. Chứng minh rằng: A chia hết cho 43.
	b. Chứng minh rằng điều kiện cần và đủđể m2 + m.n + n2 chia hết cho 9 là: m, n chia hết cho 3.
Câu 3: ( 23,5 điểm)	Độ dài các cạnh của một tam giác tỉ lệ với nhau như thế nào,biết nếu cộng lần lượt độ dài từng hai đường cao của tam giác đó thì các tổng này tỷ lệ theo 3:4:5.
Câu 4: ( 3 điểm )	Cho tam giác ABC cân tại A. D là một điểm nằm trong tam giác, biết
> . Chứng minh rằng: DB < DC.
Câu 5: ( 1 điểm )	Tìm GTLN của biểu thức: A = - .
***** Hết *****
Đáp án đề số 13
Câu 1: ( mỗi ý 0,5 điểm ).
a/. - x = 15. b/. - x > 1.
 = x + 15	 > x + 1
* Trường hợp 1: x - , ta có:	* Trường hợp 1: x , ta có:
4x + 3 = x + 15 	3x - 2 > x + 1
 x = 4 ( TMĐK).	 x > ( TMĐK).
* Trường hợp 2: x < - , ta có:	* Trường hợp 2: x < , ta có:
4x + 3 = - ( x + 15)	3x – 2 < - ( x + 1)
 x = - ( TMĐK).	 x < ( TMĐK)
Vậy: x = 4 hoặc x = - .	Vậy: x > hoặc x < .
c/. 5 
Câu 2:
a/.Ta có: A= (- 7) + (-7)2 +  + (- 7)2006 + (- 7)2007 (1)
 (- 7)A = (-7)2 + (- 7)3 +  + (- 7)2007 + (- 7)2008 (2)
8A = (- 7) – (-7)2008
Suy ra: A = .[(- 7) – (-7)2008 ] = - ( 72008 + 7 )
* Chứng minh: A 43.
Ta có: A= (- 7) + (-7)2 +  + (- 7)2006 + (- 7)2007 , có 2007 số hạng. Nhóm 3 số liên tiếp thành một nhóm (được 669 nhóm), ta được:
A=[(- 7) + (-7)2 + (- 7)3] +  + [(- 7)2005 + (- 7)2006 + (- 7)2007]
= (- 7)[1 + (- 7) + (- 7)2] +  + (- 7)2005. [1 + (- 7) + (- 7)2]
= (- 7). 43 +  + (- 7)2005. 43
= 43.[(- 7) +  + (- 7)2005] 43
Vậy : A 43
b/. * Điều kiện đủ:
Nếu m 3 và n 3 thì m2 3, mn 3 và n2 3, do đó: m2+ mn + n2 9.
* Điều kiện cần:
Ta có: m2+ mn + n2 = ( m - n)2 + 3mn. (*)
Nếu m2+ mn + n2 9 thì m2+ mn + n2 3, khi đó từ (*),suy ra: ( m - n)2 3 ,do đó ( m - n) 3 vì thế ( m - n)2 9 và 3mn 9 nên mn 3 ,do đó một trong hai số m hoặc n chia hết cho 3 mà ( m - n) 3 nên cả 2 số m,n đều chia hết cho 3.
Câu 3:
Gọi độ dài các cạnh tam giác là a, b, c ; các đường cao tương ứng với các cạnh đó là ha , hb , hc .
Ta có: (ha +hb) : ( hb + hc ) : ( ha + hc ) = 3 : 4 : 5
Hay: (ha +hb) = ( hb + hc ) =( ha + hc ) = k ,( với k 0).
Suy ra: (ha +hb) = 3k ; ( hb + hc ) = 4k ; ( ha + hc ) = 5k .
Cộng các biểu thức trên, ta có: ha + hb + hc = 6k.
Từ đó ta có: ha = 2k ; hb =k ; hc = 3k.
Mặt khác, gọi S là diện tích , ta có:
a.ha = b.hb =c.hc
 a.2k = b.k = c.3k
 = = 
Câu 4:
Giả sử DC không lớn hơn DB hay DC DB.
A
B
C
D
* Nếu DC = DB thì cân tại D nên = .Suy ra: = .Khi đó ta có: = (c_g_c) . Do đó: = ( trái với giả thiết)	.
* Nếu DC < DB thì trong , ta có < mà = suy ra:
 > ( 1 ) .
Xét và có: AB = AC ; AD chung ; DC < DB.
Suy ra: < ( 2 ).
Từ (1) và (2) trong và ta lại có < , điều này trái với giả thiết.
Vậy: DC > DB. 	
Câu 5: ( 1 điểm)
áp dụng bất đẳng thức: - , ta có:
A = - = 2007
Vậy GTLN của A là: 2007.
Dấu “ = ” xảy ra khi: x -1003.
Đề số 14
Thời gian : 120 phỳt
Câu 1 (2 điểm): Tìm x, biết : 
	a. +5x = 4x-10	b. 3+ > 13
Câu 2: (3 điểm ) 
	a. Tìm một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỷ lệ với 1, 2, 3.
	b. Chứng minh rằng: Tổng A=7 +72+73+74+...+74n chia hết cho 400 (nN). 
Câu 3 : (1điểm )cho hình vẽ , biết ++ = 1800 chứng minh Ax// By.
 	A x
	 C 
 	 B y	
Câu 4 (3 điểm ) Cho tam giác cân ABC, có =1000. Kẻ phân giác trong của góc CAB cắt AB tại D. Chứng minh rằng: AD + DC =AB
Câu 5 (1 điểm )
 Tính tổng. S = (-3)0 + (-3)1+ (-3)2 + .....+ (-3)2004.
***** Hết ***** 
Hướng dẫn chấm đề 14
Câu 1-a (1 điểm ) Xét 2 trường hợp 3x-2 0. 3x -2 <0
=> kết luận : Không có giá trị nào của x thoả mãn.
b-(1 điểm ) Xét 2 trường hợp 2x +5 0 và 2x+5<0
Giải các bất phương trình => kết luận.
Câu 2-a(2 điểm ) Gọi số cần tìm là 
18=> 9. Vậy (a+b+c) 9 	(1)
Ta có : 1 a+b+c27	 (2)
Từ (1) và (2) suy ra a+b+c =9 hoặc 18 hoặc 27 	 (3)
Theo bài ra == = (4)
Từ (3) và (4) => a+b+c=18.
và từ (4) => a, b, c mà 2 => số cần tìm : 396, 936.
b-(1 điểm )
A=(7 +72+73+74) + (75+76+77+78) + ...+ (74n-3+ 74n-2+74n-1+74n).
= (7 +72+73+74) . (1+74+78+...+74n-4).
Trong đó : 7 +72+73+74=7.400 chia hết cho 400 . Nên A 400
Câu 3-a (1 điểm ) Từ C kẻ Cz//By có :
(góc trong cùng phía) (1)
Vì theo giả thiết C1+C2 + + = 4v =3600.
Vậy Cz//Ax.	 (2)
Từ (1) và (2) => Ax//By.
Câu 4-(3 điểm) ABC cân, ACB =1000=> CAB = CBA =400.
Trên AB lấy AE =AD. Cần chứng minh AE+DC=AB (hoặc EB=DC)
 AED cân, DAE = 400: 2 =200.
 => ADE =AED = 800 =400+EDB (góc ngoài của EDB)
=> EDB =400 => EB=ED (1)
Trên AB lấy C’ sao cho AC’ = AC. C
 CAD = C’AD ( c.g.c) D
AC’D = 1000 và DC’E = 800.
Vậy DC’E cân => DC’ =ED	(2)
Từ (1) và (2) có EB=DC’.	 A C E B
Mà DC’ =DC. Vậy AD +DC =AB.
Câu 5 (1 điểm).
S=(-3)0+(-3)1 + (-3)2+(-3)3+...+ (-3)2004.
-3S= (-3).[(-3)0+(-3)1+(-3)2 + ....+(-3)2004]
= (-3)1+ (-3)2+ ....+(-3)2005]
-3S-S=[(-3)1 + (-3)2+...+(-3)2005]-(3)0-(-3)1-...-(-3)2005.
-4S = (-3)2005 -1. S = =
***** Hết ***** 
Đề số 15
Thời gian làm bài: 120 phú
Bài 1: (2,5đ) Thực hiện phép tính sau một cách hợp lí:
Bài 2: (2,5đ) Tính giá trị nhỏ nhất của biểu thức: A = 
Bài 3: (4đ) Cho tam giác ABC. Gọi H, G,O lần lượt là trực tâm , trọng tâm và giao điểm của 3 đường trung trực trong tam giác. Chứng minh rằng:
	a. AH bằng 2 lần khoảng cách từ O đến BC
	b. Ba điểm H,G,O thẳng hàng và GH = 2 GO
Bài 4: (1 đ) Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức (3-4x+x2)2006.(3+ 4x + x2)2007.
***** Hết *****
Đáp án đề 15
Bài 1: Ta có : - 
= - ()	1đ
= - ()	1đ
= - () = 	0,5đ
Bài 2: A = 
Với x3 0,5đ
Với 2 x 5 thì A = x-2 –x+5 = 3	0,5đ
Với x>5 thì A = x-2 +x –5 = 2x –7 >3 0,5đ
So sánh các giá trị của A trong các khoảng ta thấy giá trị nhỏ nhất của A = 3
A
C
B
O
G
H
 2 x 5	1đ
Bài 3: a. Trên tia đối của tia OC lấy điểm N sao
cho ON = OC .Gọi M là trung điểm của BC.
nên OM là đường trung bình của tam giác BNC.
Do đó OM //BN, OM = BN
Do OM vuông góc BC => NB vuông góc BC
Mà AH vuông góc với BC vì thế NB // AH (1đ)
Tương tự AN//BH
Do đó NB = AH. Suy ra AH = 2OM (1đ)
b. Gọi I, K theo thứ tự là trung điểm của AG và HG thì IK là đường trung bình của tam giác AGH nên IK// AH
IK = AH => IK // OM và IK = OM ; 
KIG = OMG (so le trong)
IGK = MGO nên GK = OG và IGK = MGO
Ba điểm H, G, O thẳng hàng	1đ
Do GK = OG mà GK = HG nên HG = 2GO
Đường thẳng qua 3 điểm H, G, O được gọi là đường thẳng ơ le.	1đ
Bài 4: Tổng các hệ số của một đa thức P(x) bất kỳ bằng giá trị của đa thức đó tại x=1. Vậy tổng các hệ số của đa thức:	0,5đ
P(x) = (3-4x+x2)2006 . (3+4x + x2)2007
Bằng P(1) = (3-4+1)2006 (3+4+1)2007 = 0	0,5đ
***** Hết ***** 
Đề 16
Thời gian làm bài: 120 phút
Câu 1(3đ): Chứng minh rằng
	A = 22011969 + 11969220 + 69220119 chia hết cho 102
Câu 2(3đ): Tìm x, biết: 
	a. ;	b. 
Câu 3(3đ): Cho tam giác ABC. Gọi M, N, P theo thứ tự là trung điểm của BC, CA, AB. Các đường trung trực của tam giác gặp nhau tai 0. Các đường cao AD, BE, CF gặp nhau tại H. Gọi I, K, R theo thứ tự là trung điểm của HA, HB, HC.
	a) C/m H0 và IM cắt nhau tại Q là trung điểm của mỗi đoạn.
	

Tài liệu đính kèm:

  • docTuyen_tap_de_thi_boi_duong_HSG_Toan_7.doc