Kiểm tra chất lượng các môn thi thpt quốc gia năm học 2014 – 2015 đề thi môn: Toán thời gian làm bài: 180 phút, không kể thời gian giao đề

pdf 7 trang Người đăng phongnguyet00 Lượt xem 788Lượt tải 0 Download
Bạn đang xem tài liệu "Kiểm tra chất lượng các môn thi thpt quốc gia năm học 2014 – 2015 đề thi môn: Toán thời gian làm bài: 180 phút, không kể thời gian giao đề", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Kiểm tra chất lượng các môn thi thpt quốc gia năm học 2014 – 2015 đề thi môn: Toán thời gian làm bài: 180 phút, không kể thời gian giao đề
www.DeThiThuDaiHoc.com – Đề Thi Thử Đại Học 
1 
Câu 1 (4,0 điểm).Cho hàm số 2x 1y
x 1
−
=
+
, gọi đồ thị là (C). 
 a)Khảo sát và vẽ đồ thị (C) hàm số. 
 b)Viết phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc với đường 
thẳng (d): 3 2 0x y+ + = . 
Câu 2 (2,0 điểm). Giải phương trình: 2 x2sin cos5x 1
2
 
= + 
 
Câu 3 (2,0 điểm). 
 Tìm giá trị lớn nhất và nhỏ nhất của hàm số : 3( ) . (5 )f x x x= − trên đoạn [ ]0;5 
Câu 4 (2,0 điểm). 
a) Giải phương trình sau : 2 3332log (2 1) 2log (2 1) 2 0x x− − − − = 
b) Một đội ngũ cán bộ khoa học gồm 8 nhà toán học nam , 5 nhà vật lý nữ và 
3 nhà hóa học nữ, .Chọn ra từ đó 4 người, tính xác suất trong 4 người được 
chọn phải có nữ và có đủ ba bộ môn. 
Câu 5 (2,0 điểm).Trong mặt phẳng với hệ toạ độ Oxy , cho tam giác ABC∆ có 
( ) ( )4;8 , 8;2A B − , ( )2; 10C − − . Chứng tỏ ABC∆ vuông và viết phương trình đường cao 
còn lại. 
Câu 6 (2,0 điểm). Cho hình chóp .S ABCD có đáy ABCD là hình thoi cạnh a .Góc 
 060BAC = ,hình chiếu của S trên mặt ( )ABCD trùng với trọng tâm của tam giác ABC∆ . 
Mặt phẳng ( )SAC hợp với mặt phẳng ( )ABCD góc 060 . Tính thể tích khối chóp 
.S ABCD và khoảng cách từ B đến mặt phẳng ( )SCD theo a . 
Câu 7 (2,0 điểm). Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác nhọn ABC. 
Đường thẳng chứa đường trung tuyến kẻ từ đỉnh A và đường thẳng BC lần lượt có 
phương trình là 3 5 8 0, 4 0x y x y+ − = − − = . Đường thẳng qua A vuông góc với đường 
thẳng BC cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là ( )4; 2D − . Viết 
phương trình các đường thẳng AB, AC; biết rằng hoành độ của điểm B không lớn 
hơn 3. 
Câu8 (2,0 điểm). Giải hệ phương trình: 
3
2 2 2
2 2 1 3 1
 ( , )
9 4 2 6 7
y y x x x
x y
y x y
 + + − = −
∈
− = + −
ℝ 
Câu 9 (2,0 điểm). Cho các số thực a,b,c thỏa mãn a b c≥ ≥ và 2 2 2a b c 5+ + = . Chứng 
minh rằng: (a b)(b c)(c a)(ab bc ca) 4− − − + + ≥ − 
 ---------HẾT-------- 
 Thí sinh không được sử dụng tài liệu .Cán bộ coi thi không giải thích gì thêm 
Họ và tên:..SBD: 
 SỞ GD VÀ ĐT THANH HÓA 
TRƯỜNG THPT TRẦN PHÚ 
KIỂM TRA CHẤT LƯỢNG CÁC MÔN THI THPT QUỐC GIA 
NĂM HỌC 2014 – 2015 
ĐỀ THI MÔN: TOÁN 
Thời gian làm bài: 180 phút, không kể thời gian giao đề 
Cảm ơn cô Phương Tâm ( phuongtam79@gmail.com) đã gửi tới www.laisac.page.tl
www.DeThiThuDaiHoc.com – Đề Thi Thử Đại Học 
2 
 SỞ GD VÀ ĐT THANH HÓA 
TRƯỜNG THPT TRẦN PHÚ 
KỲ THI THỬ THPT QUỐC GIA NĂM HỌC 2014 – 
2015 
Thời gian làm bài: 180 phút, không kể thời gian giao đề 
 Môn: TOÁN 
 HƯỚNG DẪN CHẤM 
(Gồm 04 trang) 
Câu 1. (4 điểm) 
Nội dung Điểm 
1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) 2đ 
 +Tập xác định { }\ 1D = −ℝ 0.25 
+Sự biến thiên 
• Chiều biến thiên: ( )2
3
'
1
y
x
=
+
0> 1x∀ ≠ − . 
Hàm số đồng biến trên các khoảng ( ); 1−∞ − và ( )1;− +∞ 
• Cực trị : Hàm số không có cực trị. 
0.25 
• Giới hạn tại vô cực và tiệm cận: 
2 1lim lim 2
1x x
xy
x→±∞ →±∞
−
= =
+
 ,đường thẳng 2y = là tiệm cận ngang 
1 1
2 1 2 1lim ; lim
1 1x x
x x
x x− +→− →−
− −
= +∞ = −∞
+ +
, đường thẳng 1x = − là tiệm cận đứng 
0.5 
• Bảng biến thiên : 
x - ∞ - 1 + ∞ 
y' + || + 
y 2 
 +∞ || 
2 −∞ 
0.5 
+Đồ thị:Đồ thị hàm số cắt trục Ox tại điểm 1 ;0
2
A  
 
Đồ thị hàm số cắt trục Oy tại điểm ( )0; 1B −
Đồ thị hàm số nhận giao điểm của 2 tiệm cận là ( )1;2I − làm tâm đối xứng 
 ( Đồ thị ) 
0.5 
www.DeThiThuDaiHoc.com – Đề Thi Thử Đại Học 
3 
2, Viết phương trình tiếp tuyến 2đ 
 Gọi k là hệ số góc của tiếp tuyến tại điểm 0 0( ; )M x y ta có : 
'
0 2
0
3( ) ( 1)k f x x= = + 
0.5 
Lại có 1. 1 3
3
k k − = − ⇒ = 
 
0.5 
hay 02
00
03 3
2( 1)
x
xx
=
= ⇔ 
= −+ 
 0.5 
Với 0 00 1x y= ⇒ = − Vậy phương trình tiếp tuyến là : 3 1y x= − 
Với 0 02 5x y= − ⇒ = Vậy phương trình tiếp tuyến là : 3 11y x= + 
0.5 
Câu 2. (2 điểm) 
Nội dung Điểm 
2 x2sin 1 cos5x cosx cos5x
2
 
− = ⇔ − = 
 
 0.5 
( ) ( )cos x cos 5xpi⇔ = − 0.5 
5 2 6 3
5 2
4 2
k
x
x x k
x x k k
x
pi pi
pi pi
pi pi pi pi

= += − +
⇔ ⇔ 
= − + 
= +

là nghiệm của phương trình. 1.0 
Câu 3. (2 điểm) 
Nội dung Điểm 
f(x) = 3x (5 x)− hàm số liên tục trên đoạn [0; 5] 
f(x) 3/ 2x(5 x) x (0;5)= − ∀ ∈ 0,5 
f ’(x) = 55 x(5 x)
2
− − 0,5 
f’(x) = 0 x 5; x 2⇒ = = . Ta có : f(2) = 6 3 , f(0) = f(5) = 0 0,5 
Vậy 
x [0;5]
Max
∈
f(x) = f(2) = 6 3 , 
x [0;5]
Min
∈
f(x) = f(0) = 0 0,5 
Câu 4. (2 điểm) 
www.DeThiThuDaiHoc.com – Đề Thi Thử Đại Học 
4 
Nội dung Điểm 
a) 2 3332log (2 1) 2log (2 1) 2 0x x− − − − = 
Điều kiện : 1
2
x ≥ 0,25 
PT 23 38log (2 1) 6log (2 1) 2 0x x⇔ − − − − = 0,25 
3
2
3 3
3
log (2 1) 1
4 log (2 1) 3log (2 1) 1 0 1log (2 1)
4
x
x x
x
− =
⇔ − − − − = ⇔

− = −

 0,25 
4
3
2
3 1
2 3
x
x
=
⇔ +
=

 là nghiệm của phương trình đã cho. 0,25 
b) Tính xác suấ 
Ta có : 416 1820CΩ = = 0.25 
Gọi A= “ 2nam toán ,1 lý nữ, 1 hóa nữ” 
 B= “ 1 nam toán , 2 lý nữ , 1 hóa nữ “ 
 C= “ 1 nam toán , 1 lý nữ , 2 hóa nữ “ 
Thì H= A B C∪ ∪ = ” Có nữ và đủ ba bộ môn “ 
0.5 
2 1 1 1 2 1 1 1 2
8 5 3 8 5 3 8 5 3 3( )
7
C C C C C C C C CP H + += =
Ω
 0.25 
Câu 5. (2 điểm) 
Nội dung Điểm 
Ta có : ( ) ( )12; 6 ; 6; 12AB BA= − − = −  0,5 
Từ đó . 0AB BC =
 
Vậy tam giác ABC vuông tại B 0,5 
* Viết phương trình đường cao BH: Ta có đường cao BH đi qua ( )8;2B − và 
nhận ( ) ( )6; 18 6 1;3AC = − − = − làm vecto pháp tuyến 0,5 
Phương trình BH : 3 2 0x y+ + = 0,5 
Câu 6. (2 điểm) 
www.DeThiThuDaiHoc.com – Đề Thi Thử Đại Học 
5 
O
S
A
D
CB
H
E
Nội dung Điểm 
* Gọi O AC BD= ∩ Ta có :  0, 60OB AC SO AC SOB⊥ ⊥ ⇒ = 
0.25 
Xét tam giác SOH vuông tại H : 0 0 3tan 60 .tan 60 . 3
6 2
SH a aSH OH
HO
= ⇒ = = = 
0.25 
Ta có : tam giác ABC đều : 
2 32.
2ABCD ABC
aS S= = 0.25 
Vậy 
2 31 1 3 3
. . . .
3 3 2 2 12SABCD ABCD
a a aV SH S= = = (đvtt) 0.25 
Trong ( )SBD kẻ OE SH khi đó ta có : ; ;OC OD OE đôi một vuông góc Và : 
3 3
; ;
2 2 8
a a aOC OD OE= = = 0.5 
Áp dụng công thức : 2 2 2 21 1 1 1( , )d O SCD OC OD OE= + +
3
112
ad⇒ = 
Mà ( ) ( ) 6, 2 ,
112
ad B SCD d O SCD= = 
0.5 
Câu 7. (2,0 điểm) 
Tính khoang cach
www.DeThiThuDaiHoc.com – Đề Thi Thử Đại Học 
6 
MK
H
D
CB
A
Nội dung Điểm 
Gọi M là trung điểm của BC, H là trực tâm tam giác ABC, K là giao điểm 
của BC và AD, E là giao điểm của BH và AC. Ta kí hiệu ,d dn u
 
 lần lượt là 
vtpt, vtcp của đường thẳng d. Do M là giao điểm của AM và BC nên tọa độ 
của M là nghiệm của hệ phươ
7
4 0 7 12 ;
3 5 8 0 1 2 2
2
x
x y
M
x y y

=
− − =   
⇔ ⇒ −   + − =   
= −

0,5 
AD vuông góc với BC nên ( )1;1AD BCn u= =
 
, mà AD đi qua điểm D suy ra 
phương trình của ( ) ( ):1 4 1 2 0 2 0AD x y x y− + + = ⇔ + − = . Do A là giao điểm 
của AD và AM nên tọa độ điểm A là nghiệm của hệ phương trình 
( )3 5 8 0 1 1;1
2 0 1
x y x
A
x y y
+ − = = 
⇔ ⇒ 
+ − = = 
0,5 
Tọa độ điểm K là nghiệm của hệ phương trình: 
( )4 0 3 3; 1
2 0 1
x y x
K
x y y
− − = = 
⇔ ⇒ − 
+ − = = − 
0,25 
Tứ giác HKCE nội tiếp nên  BHK KCE= , mà  KCE BDA= (nội tiếp chắn cung 
AB ) Suy ra  BHK BDK= , vậy K là trung điểm của HD nên ( )2;4H . 
(Nếu học sinh thừa nhận H đối xứng với D qua BC mà không chứng minh, 
trừ 0.25 điểm) 
0,25 
Do B thuộc BC ( ); 4B t t⇒ − , kết hợp với M là trung điểm BC suy ra 
( )7 ;3C t t− −
( 2; 8); (6 ;2 )HB t t AC t t− − − −
 
. Do H là trực tâm của tam giác ABC nên 
( )( ) ( )( ) ( ) ( ) 2. 0 2 6 8 2 0 2 14 2 0
7
t
HB AC t t t t t t
t
=
= ⇔ − − + − − = ⇔ − − = ⇔ 
=
 
0,25 
Do ( ) ( )3 2 2; 2 , 5;1t t B C≤ ⇒ = ⇒ − . Ta có 
( ) ( ) ( ) ( )1; 3 , 4;0 3;1 , 0;1AB ACAB AC n n= − = ⇒ = =
   
Suy ra : 3 4 0; : 1 0.AB x y AC y+ − = − = 
0,25 
Câu 8. (2,0 điểm) 
E 
www.DeThiThuDaiHoc.com – Đề Thi Thử Đại Học 
7 
Nội dung Điểm 
Điều kiện: 3 31; ;
2 2
x y  ≤ ∈ −  
. Ta có 0.25 
3
3
(1) 2 2 1 2 1 1
2 2(1 ) 1 1
y y x x x x
y y x x x
⇔ + = − − − + −
⇔ + = − − + −
 0.25 
3( ) 2 ,f t t t= + ta có 
2
'( ) 6 1 0, ( )f t t t f t= + > ∀ ∈ ⇒ℝ đồng biến trên ℝ . Vậy 
2
0(1) ( ) ( 1 ) 1
1
yf y f x y x
y x
≥
⇔ = − ⇔ = − ⇔ 
= −
0.25 
Thế vào (2) ta được : 24 5 2 6 1x x x+ = − − 0.25 
Pt 22 4 5 4 12 2x x x⇔ + = − − ( ) ( )2 24 5 1 2 2x x⇔ + + = − 0.5 
4 5 2 3( )
4 5 1 2
x x vn
x x
 + = −
⇔ 
+ = −
1
2
1 2( )
1 2
x
x l
x
 ≤

⇔  = +

 = −
Với 
4
4
2
1 2
2
y
x
y
 =
= − ⇒ 
= −
Vậy hệ có hai nghiệm. 
0.5 
Câu 9. (2,0 điểm) 
Nội dung Điểm 
Ta có 
(a b)(b c)(c a)(ab bc ca) 4− − − + + ≥ − (a b)(b c)(a c)(ab bc ca) 4⇔ − − − + + ≤ 
(*). Đặt vế trái của (*) là P 
Nếu ab + bc + ca < 0 thì P ≤ 0 suy ra BĐ đã được 
chứng minh 
0.25 
Nếu ab + bc + ca ≥ 0 , đặt ab + bc + ca = x≥ 0 0.25 
(a-b)(b-c) 
2 2a b b c (a c)
2 4
− + − − ≤ = 
 
 ⇒ (a - b)(b - c)(a - c) 
3(a c)
4
−≤ (1) 0.25 
 Ta có : 4(a2 + b2 + c2 - ab - bc - ca) = 2(a - c)2 + 2(a - b)2 + 2(b - c)2 
≥ 2(a - c)2 + [(a - b) + (b - c)]2 = 2(a - c)2 + (a - c)2 = 3(a - c)2 
Suy ra 4(5 - x) ≥ 3(a - c)2 ,từ đây ta có x ≤ 5 và 4a c (5 x)
3
− ≤ − (2) . 
0.25 
Cảm ơn cô Phương Tâm ( phuongtam79@gmail.com) đã gửi tới www.laisac.page.tl
Xet ham so

Tài liệu đính kèm:

  • pdfToan Tran Phu 2015.pdf