sO crAo oqc vA uAo r.$o HtNc ytN xt rru rnrJ rHpr au6.c cl,q. xAIvI zoro Mdn: TOAN Thdi gian ldm bdi;180 philt, khdng tce tndi gian phdt diof cuixg rHrlc Ciu 1 (1,0 di6@. Kh6o siit sU bi6n thien vd vE dO thi cta hirm sd y = - -?x-l Ciu2 (t,0ifiA@. Timgi6tri crtamdCnamsd y= x3 *(m+2)x2 +3x c6 2dilmcuctri. Cflu 3 (1,0 iIiA@. a) Gini b6t phuong trinh: log, x + log, (x -2) <3 . b) Cho s6 phric zthbamdn: (l + i)(z+ i) = l+2i. Tim mOdun oiua z. L cflu 4 (1,0 iti\m). Tinh rich ph6n: I = p* tott 6,j l+sinx cfiu 5 (1,0 ifiam). Trong khdng gian vdi hQ tga dQ oxyz, cho c6c di€m A(z;0;0), B(0;-l;0), C(0;0;1). Vi6t phuong trinh mit phing UBq vd tim tqa d0 tdm duong trdn ngo4i ti6p tam gi6c ABC. Cflu 6 (1,0 itidm). a) Gi6i phuong trinh: 2sin3x + sin5x = 2cos2.rsinx. b) MOt tO g6m t hqc sinh nam vd 6 hgc sinh nt trong d6 c6 ban t6 trudmg li nam, ban t6 ph6 ld nfi. Chgn ng6u nhi6n 7 b4n trong tO. tinh x6c su6t it6 chgn dugc 4 ban nam, 3 bpn nt trong d6 c6 td truong hopc td ph6 nhtmg khdng c6 ci hai ngudi. Cffu 7 Q,A ili6@. Cho hinh ch6p S.ABC c6 d6y ABC vu6ng c6n tpi B, canh Sl vu6ng g6c vdi mflt day, AB = Jzo, SB =3J2a. Gqi M li trung di6m SC. Tinh th€ tich ktiii ch6p S.IBC vi khoing c6ch tu,S et6n mp(,4M8) theo a. CAu 8 (1,0 diA@. Trong m4t phing vdi h- tqa dQ Oxy, cho hinh thang ABCD vudng tpi c6c ' ,i6* lr[1rr] thuQc doan thln gACvd NC =ZNA. Ducrngdinhl, B vd co AB = AD =lAC .O2 \.3' ,l trung tuy6n ke tt B ciatam gi6c BCD co phuong trinh r - y-2=0. Tim t4o dQ c6c dinh cta hinh thang ABCD Uitlt Oiem B c6 hodnh dQ 6m. C0u 9 (1,0 iti\m). Giei b6t phuong trinh:'17;+lJ7l <2xz +x-1 (x e R). Ciu 10 (1,0 cfiAd. Cho x, !, z li c6c sti thr;c duong th6a m6n T +,{y, + Ji *Z"f xyz =t. Tim gi6 tri lm nh6t cria bi€u thr?c *'lv,P- HAt Thi sinh khdng etrgc sfr dgng tdi liQu. Cdn bQ coi thi khbng gidi th{ch gi thAm. (x+ y)(x+ z) IIe vd t\n thi sinh:.......,.. . Sii bao danh:
Tài liệu đính kèm: