Đề thi thử kỳ thi thpt quốc gia 2015 môn thi: Toán thời gian làm bài: 180 phút, không kể thời gian phát đề

pdf 6 trang Người đăng phongnguyet00 Lượt xem 688Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi thử kỳ thi thpt quốc gia 2015 môn thi: Toán thời gian làm bài: 180 phút, không kể thời gian phát đề", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề thi thử kỳ thi thpt quốc gia 2015 môn thi: Toán thời gian làm bài: 180 phút, không kể thời gian phát đề
www.VNMATH.com 
TRƯỜNG THPT CHUYÊN 
HƯNG YÊN 
BAN CHUYÊN MÔN 
ĐỀ THI THỬ KỲ THI THPT QUỐC GIA 2015 
Môn thi: TOÁN 
Thời gian làm bài: 180 phút, không kể thời gian phát đề 
Câu 1 (2,0 điểm). Cho hàm số 3 23 2y x mx   (1), với m là tham số thực. 
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 1. 
b) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A, B sao cho diện tích tam giác OAB bằng 2 
(O là gốc tọa độ). 
Câu 2 (1,0 điểm). Giải bất phương trình    11 1 2
2 2
log 4 4 log 2 3 log 2x x x    . 
Câu 3 (1,0 điểm). 
a) Gọi A, B là hai điểm biểu diễn cho các số phức là nghiệm của phương trình 2 2 3 0z z   . Tính 
độ dài đoạn thẳng AB. 
b) Trong kì thi THPT Quốc gia năm 2015, mỗi thí sinh có thể dự thi tối đa 8 môn: Toán, Lý, Hóa, 
Sinh, Văn, Sử, Địa và Tiếng anh. Một trường Đại học dự kiến tuyển sinh dựa vào tổng điểm của 
3 môn trong kì thi chung và có ít nhất 1 trong hai môn là Toán hoặc Văn. Hỏi trường Đại học đó 
có bao nhiêu phương án tuyển sinh? 
Câu 4 (1,0 điểm). Tính tích phân 
2
0
sin
cos 2 3cos 2
x
I dx
x x


 
Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho hai điểm    4;2;2 , 0;0;7A B và 
đường thẳng 
3 6 1
:
2 2 1
x y z
d
  
 

. Chứng minh rằng hai đường thẳng d và AB cùng thuộc một 
mặt phẳng. Tìm điểm C thuộc đường thẳng d sao cho tam giác ABC cân đỉnh A. 
Câu 6 (1,0 điểm). Cho lăng trụ đứng . ' ' 'ABC A B C có đáy là tam giác cân, AB AC a  , 
 0120BAC  . Mặt phẳng (AB'C') tạo với mặt đáy góc 600. Tính thể tích lăng trụ ABC.A'B'C' và 
khoảng cách từ đường thẳng BC đến mặt phẳng  ' 'AB C theo a . 
Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có  1;2A  . Gọi M, 
N lần lượt là trung điểm của cạnh AD và DC; K là giao điểm của BN với CM. Viết phương trình 
đường tròn ngoại tiếp tam giác BMK, biết BN có phương trình 2 8 0x y   và điểm B có hoành 
độ lớn hơn 2. 
Câu 8 (1,0 điểm). Giải hệ phương trình 
 
 
2 2
2 2
1 2 2 3
,
1 2 2
y x y x y xy
x y
y x y y x
     

     
 
Câu 9 (1,0 điểm). Cho , ,x y z là các số thực dương thỏa mãn    2 2 25 9 2x y z xy yz zx     
Tìm giá trị lớn nhất của biểu thức: 
 
32 2
1x
P
y z x y z
 
  
 ---------------Hết---------------- 
WW
W.
VN
MA
TH
.CO
M
www.VNMATH.com 
ĐÁP ÁN 
Câu Nội dung Điểm 
a) Khảo sát hàm số 3 23 2y x mx   
Với m = 1, ta có hàm số: y = x3 + 3x2 + 2 
*) TXĐ:  
*) Sự biến thiên: 
 +) Giới hạn tại vô cực: lim
x
y

  
0,25 
 +) Chiều biến thiên: 
 y' = 3x2 + 6x  y' = 0  x = 0 hoặc x = -2 
 Bảng biến thiên: 
x - - 2 0 + 
y’ + 0 - 0 + 
y 
 6 + 
 2 
 - 
0,25 
 hàm số đồng biến trên (-; -2) và (0; +); hàm số nghịch biến trên (-2; 0) 
 hàm số đạt cực đại tại x = -2, yCĐ = 6; hàm số đạt cực tiểu tại x = 0, yCT = 2 
0,25 
*) Đồ thị: 
Nhận xét: đồ thị hàm số nhận điểm 
I(-1; 4) làm tâm đối xứng. 
0,25 
b) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A, B sao cho diện tích 
tam giác OAB bằng 2 
Với mọi x  , y' = 3x2 + 6mx  y' = 0  x = 0 hoặc x = -2m 
Để hàm số có cực đại, cực tiểu thì phương trình y' = 0 có hai nghiệm phân biệt 
  m  0 
Khi đó, tọa độ các điểm cực trị là: A(0; 2); B(-2m; 4m3 + 2) 
0,5 
1 
SOAB = 1  OA.d(B;OA) = 4  
1
2 2
1
m
m
m

     
 (thỏa mãn) 
Vậy với m =  1 thì hàm số có 2 cực trị thỏa mãn bài. 
0,5 
2    11 1 2
2 2
log 4 4 log 2 3 log 2x x x    
0,5 
6
4
2
-2
-5 5
WW
W.
VN
MA
TH
.CO
M
www.VNMATH.com 
   
   
1
1 1 1
2 2 2
2 1
1 1
2 2
log 4 4 log 2 3 log 2
log 4 4 log 2 3.2
x x x
x x x


    
   
 
2 14 4 2 3.2
4 3.2 4 0
2 1
2
2 4
x x x
x x
x
x
L
x
   
   
  
  

Vậy BPT có tập nghiệm: S =  2; 
0,5 
a) Xét phương trình: 2 2 3 0z z   
 ' = 1 - 3 = -2 =  
2
2i 
Phương trình có hai nghiệm: 1 21 2; 1 2z i z i      
0,25 
    1; 2 ; 1; 2A B   
AB = 2 2 
0,25 
b) TH1: Trường ĐH chỉ xét 1 trong 2 môn Toán hoặc Văn: 
 Có: 262. 30C  (cách) 
0,25 
3 
TH2: Trường ĐH xét cả hai môn Toán và Văn: 
 Có: 161. 6C  (cách) 
Vậy có các trường hợp là: 30 + 6 = 36 (cách) 
0,25 
2 2
2
0 0
sin sin
cos2 3cos 2 2cos 3cos 1
x x
I dx dx
x x x x
 
 
    
Đặt cosx = t  dt = -sinxdx 
Với x = 0  t = 1; với x = 
2

  t = 0 
0,25 
  
1 1 1
2
0 0 0
1 1
2
2 3 1 2 1 1 2 1 2 2
dt dt
I dt
t t t t t t
 
    
      
   
0,25 
4 
 = 
1
0
2 1 3
ln ln
2 2 2
t
t
 
 
 
0,5 
WW
W.
VN
MA
TH
.CO
M
www.VNMATH.com 
Đường thẳng d có véctơ chỉ phương  2;2;1u 

 và đi qua M(3;6;1) 
Đường thẳng AB có véctơ chỉ phương  4; 2;5AB  

 1;4; 1AM  

Ta có:  , 12;6;12u AB   
 
 , . 12 24 12 0u AB AM       
  
Vậy AB và d đồng phẳng 
0,5 
5 
 3 2 ;6 2 ;1C d C t t t     
Tam giác ABC cân tại A  AB = AC 
  (1 + 2t)2 + (4 + 2t)2 + (1 - t)2 = 45 
  9t2 + 18t - 27 = 0  t = 1 hoặc t = -3 
Vậy C(1; 8; 2) hoặc C(9; 0; -2) 
0,5 
+ Xác định góc giữa (AB'C') và mặt đáy là 'AKA  0' 60AKA  . 
 Tính A'K = 
1
' '
2 2
a
A C   0
3
' ' . tan 60
2
a
AA A K  
3
. ' ' '
3
=AA'.S
8
ABC A B C ABC
a
V  
0,5 
6 
+) d(B;(AB'C')) = d(A';(AB'C')) 
Chứng minh: (AA'K)  (AB'C') 
Trong mặt phẳng (AA'K) dựng A'H vuông góc với AK  A'H  (AB'C') 
 d(A';(AB'C')) = A'H 
Tính: A'H = 
3
4
a
Vậy d(B;(AB'C')) =
3
4
a
0,5 
H
K
C'
B'
A'
CB
A
WW
W.
VN
MA
TH
.CO
M
www.VNMATH.com 
Gọi E = BN  AD  D là trung điểm của AE 
Dựng AH  BN tại H   
8
AH d A;BN
5
  
Trong tam giác vuông ABE: 
2 2 2 2
1 1 1 5
AH AB AE 4AB
   
 
5.AH
AB 4
2
  
0,25 
B  BN  B(b; 8 - 2b) (b > 2) 
AB = 4  B(3; 2) 
0,25 
Phương trình AE: x + 1 = 0 
E = AE  BN  E(-1; 10)  D(-1; 6)  M(-1; 4) 
0,25 
7 
Gọi I là tâm của (BKM)  I là trung điểm của BM  I(1; 3) 
BM
R 5
2
  . Vậy phương trình đường tròn: (x - 1)2 + (y - 3)2 = 5. 
0,25 
   
 
2 2
2 2
1 2 2 3 1
1 2 2 2
y x y x y xy
y x y x y
     

     
ĐK: y  -1 
Xét (1):   2 21 2 2 3y x y x y xy     
Đặt  2 22 0x y t t   
Phương trình (1) trở thành:  2 2 21 2 2 3 0t y t x y x y xy        
  = (1 - y)2 + 4(x2 + 2y2 + x + 2y + 3xy) = (2x + 3y + 1)2 
2 2
2 2
2 11
2 2 2
x y x yt x y
t x y x y x y
        
       
0,5 
8 
Với 2 22 1x y x y     , thay vào (2) ta có: 
2
1
1 3 1 03
9 5 0
y
y y y
y y

 
     
  
 2 1x x   (vô nghiệm) 
0,25 
H
E
K
N
M
D C
BA
WW
W.
VN
MA
TH
.CO
M

Tài liệu đính kèm:

  • pdfhung yen.pdf