SỞ GIÁO DỤC & ĐÀO TẠO PHÚ THỌ ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 TRUNG HỌC PHỔ THÔNG NĂM HỌC 2013-2014 Môn Toán Thời gian làm bài: 120 phút, không kể thời gian giao đề Đề thi có 01 trang Ngày thi : 18-6-2013 ------------------------------------------- Câu1 (2,0 điểm) a) Tính : b) Trong các hình sau đây : Hình vuông, hình bình hành, hình chữ nhật, hình thang cân hình nào có hai đường chéo bằng nhau ? Câu2 (2,0 điểm) Giải phương trình : Giải hệ phương trình Câu 3 (2,0 điểm) a) Rút gọn biểu thức với b) Cho phương trình x2 +2(m+1)x +m2 = 0 Tìm m để phương trình có hai nghiệm phân biệt trong đó có một nghiệm bằng -2 ; Câu 4 (3,0 điểm) Cho đường tròn tâm O đường kính AB = 2R. Gọi I là trung điểm OA, qua I kẻ dây MN vuông góc với OA . C thuộc cung nhỏ MB (C khác B, M), AC cắt MN tại D Chứng minh tứ giác BIDC nội tiếp Chứng minh AD.AC=R2 c) Khi C chạy trên cung nhỏ MB chứng minh rằng tâm đường tròn ngoại tiếp tam giác CMD luôn thuộc đường thẳng cố định. Câu 5 (1,0 điểm) Cho x, y là 2 số thực dương Tìm giá trị nhỏ nhất của biểu thức ---------------------------Hết---------------------- HƯỚNG DẪN ĐỀ THI NĂM 13-14 Câu1 (2,0 điểm) a) Tính : b) Trong các hình sau đây : Hình vuông, hình bình hành, hình chữ nhật, hình thang cân hình nào có hai đường chéo bằng nhau ? ĐSố : a) A=1 b) Hình vuông ; Hình chữ nhật ; Hình thang cân Câu2 (2,0 điểm) Giải phương trình : Giải hệ phương trình Đáp Số : a) x1=3 ; x2=1/2 . b) (x:y)=(1;1) Câu 3 (2,0 điểm) a) Rút gọn biểu thức với b) Cho phương trình x2 +2(m+1)x +m2 = 0 Tìm m để phương trình có hai nghiệm phân biệt trong đó có một nghiệm bằng -2 ; HD : a) == 1-a b) có D' =(m+1)2-m2 = 2m+1 Để phương trình có 2 nghiệm phân biệt thì 2m+1>0 ó m>-1/2 Vì x=-2 là nghiệm của pt nên ta có 4-4(m+1)+m2 =0 ó m2 - 4m=0ó m=0; m=4 Vậy với m=0 ; m=4 thì pt có 2 nghiệm phân biệt, trong đó có 1 nghiệm =-2 Câu 4 (3,0 điểm) Cho đường tròn tâm O đường kính AB = 2R. Gọi I là trung điểm OA, qua I kẻ dây MN vuông góc với OA . C thuộc cung nhỏ MB (C khác B, M), AC cắt MN tại D Chứng minh tứ giác BIDC nội tiếp Chứng minh AD.AC=R2 c) Khi C chạy trên cung nhỏ MB chứng minh rằng tâm đường tròn ngoại tiếp tam giác CMD luôn thuộc đường thẳng cố định. Hướng dẫn: a) ta có (góc nt chắn ½ đường tròn) ( NM vuông góc AB) ð góc DIB+góc DCB=180 => BIDC nội tiếp. b) ta có tam giác ADI đồng dạng với tam giác ABC ( G-G) c) Gọi E là tâm đường tròn ngoại tiếp tam giác DCM Kẻ EH vuông góc với MD=> MED là tam giác cân tại E=>EH là phân giác của góc MED =>góc MED=2góc MEH Lại có góc MED=2goc MCD (quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn 1cung) =>góc MEH =góc MCD Ta có AB là trung trực NM => cung AM=cung AN=>góc AMN=gócACM ð góc AMN= góc MEH=>góc EMH+ góc AMN =góc EMH + góc MEH =90 ð EM vuông góc với AM ; mà AM vuông góc với BM (góc AMB=90) ð B; M; E thẳng hàng Mà B và M cố định nên tâm E của đường tròn ngoại tiếp tam giác DCM thuộc đường thẳng cố định. Câu 5 (1,0 điểm) Cho x, y là 2 số thực dương Tìm giá trị nhỏ nhất của biểu thức Hướng dẫn : vì x, y dương P của P = khi ---------------------------Hết----------------------
Tài liệu đính kèm: