ĐỀ CHỌN ĐỘI DỰ TUYỂN HỌC SINH GIỎI TĨNH MÔN TOÁN 10, NĂM HỌC 2009 - 2010 Thời gian 180 phút, không kể thời gian giao đề Lần: 03. Ngày 10 - 01 - 2010 Câu I: (5,0 điểm) a. Giải phương trình b. Giải hệ phương trình Câu II: (5,0 điểm). Cho tam giác ABC có đường cao CH, HÎAB. Các điểm I, K lần lượt là trung điểm của các đoạn AB và CH . Một đường thẳng d di động luôn song song với cạnh AB cắt cạnh AC tại M và cạnh BC tại N. Vẽ hình chữ nhật MNPQ với hai điểm P, Q thuộc cạnh AB. Gọi J là tâm của hình chữ nhật MNPQ. Chứng minh I, J, K thẳng hàng. Câu III: (3,0 điểm) Gọi x1, x2 là 2 nghiệm của pt: 2x2 + 2(m + 1)x + m2 + 4m + 3 = 0. Với giá trị nào của m thì biểu thức A = đạt giá trị lớn nhất. Câu IV: (4,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho DABC có đỉnh A(4; 3), đường cao BH và trung tuyến CM có pt lần lượt là: 3x - y + 11 = 0, x + y - 1 = 0. Tìm tọa độ các đỉnh B, C Câu V: ( 3,0 điểm) Cho 3 số thực dương x,y,z >o thoả : .Tìm GTNN của A = ---Hết--- ĐỀ CHỌN ĐỘI DỰ TUYỂN HỌC SINH GIỎI TĨNH MÔN TOÁN 10, NĂM HỌC 2009 - 2010 Thời gian 180 phút, không kể thời gian giao đề Lần: 03. Ngày 10 - 01 - 2010 Câu I: (5,0 điểm) a. Giải phương trình b. Giải hệ phương trình Câu II: (5,0 điểm). Cho tam giác ABC có đường cao CH, HÎAB. Các điểm I, K lần lượt là trung điểm của các đoạn AB và CH . Một đường thẳng d di động luôn song song với cạnh AB cắt cạnh AC tại M và cạnh BC tại N. Vẽ hình chữ nhật MNPQ với hai điểm P, Q thuộc cạnh AB. Gọi J là tâm của hình chữ nhật MNPQ. Chứng minh I, J, K thẳng hàng. Câu III: (3,0 điểm) Gọi x1, x2 là 2 nghiệm của pt: 2x2 + 2(m + 1)x + m2 + 4m + 3 = 0. Với giá trị nào của m thì biểu thức A = đạt giá trị lớn nhất. Câu IV: (4,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho DABC có đỉnh A(4; 3), đường cao BH và trung tuyến CM có pt lần lượt là: 3x - y + 11 = 0, x + y - 1 = 0. Tìm tọa độ các đỉnh B, C Câu V: ( 3,0 điểm) Cho 3 số thực dương x,y,z >o thoả : .Tìm GTNN của A = ---Hết---
Tài liệu đính kèm: