Bộ đề ôn thi tuyển sinh lớp 10 thpt

doc 3 trang Người đăng phongnguyet00 Lượt xem 747Lượt tải 0 Download
Bạn đang xem tài liệu "Bộ đề ôn thi tuyển sinh lớp 10 thpt", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bộ đề ôn thi tuyển sinh lớp 10 thpt
BỘ ĐỀ ÔN THI TUYỂN SINH LỚP 10 THPT
ĐỀ SỐ 1 
Câu 1: a) Cho biết a = và b = . Tính giá trị biểu thức: P = a + b – ab.
 b) Giải hệ phương trình: .
Câu 2: Cho biểu thức P = (với x > 0, x 1)
Rút gọn biểu thức P.
Tìm các giá trị của x để P > .
Câu 3: Cho phương trình: x2 – 5x + m = 0 (m là tham số).
 a) Giải phương trình trên khi m = 6.
 b) Tìm m để phương trình trên có hai nghiệm x1, x2 thỏa mãn: .
Câu 4: Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC ( E khác B và C ), AE cắt CD tại F. Chứng minh: 
 a) BEFI là tứ giác nội tiếp đường tròn.
 b) AE.AF = AC2.
 c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định.
Câu 5: Cho hai số dương a, b thỏa mãn: a + b . Tìm giá trị nhỏ nhất của biểu thức: P = .
ĐỀ SỐ 2
Câu 1: a) Rút gọn biểu thức: .
Giải phương trình: x2 – 7x + 3 = 0.
Câu 2: a) Tìm tọa độ giao điểm của đường thẳng d: y = - x + 2 và Parabol (P): y = x2.
b) Cho hệ phương trình: . 
Tìm a và b để hệ đã cho có nghiệm duy nhất ( x;y ) = ( 2; - 1).
Câu 3: Một xe lửa cần vận chuyển một lượng hàng. Người lái xe tính rằng nếu xếp mỗi toa 15 tấn hàng thì còn thừa lại 5 tấn, còn nếu xếp mỗi toa 16 tấn thì có thể chở thêm 3 tấn nữa. Hỏi xe lửa có mấy toa và phải chở bao nhiêu tấn hàng.
Câu 4: Từ một điểm A nằm ngoài đường tròn (O;R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ MIAB, MKAC (IAB,KAC)
 a) Chứng minh: AIMK là tứ giác nội tiếp đường tròn.
 b) Vẽ MPBC (PBC). Chứng minh: .
 c) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.
Câu 5: Giải phương trình:
ĐỀ SỐ 3
Câu 1: Giải phương trình và hệ phương trình sau:
a) x4 + 3x2 – 4 = 0 
b) 
Câu 2: Rút gọn các biểu thức:
 a) A = 
 b) B = ( với x > 0, x 4 ).
Câu 3: a) Vẽ đồ thị các hàm số y = - x2 và y = x – 2 trên cùng một hệ trục tọa độ.
	b) Tìm tọa độ giao điểm của các đồ thị đã vẽ ở trên bằng phép tính.
Câu 4: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O;R). Các đường cao BE và CF cắt nhau tại H.
 a) Chứng minh: AEHF và BCEF là các tứ giác nội tiếp đường tròn.
 b) Gọi M và N thứ tự là giao điểm thứ hai của đường tròn (O;R) với BE và CF. Chứng minh: MN // EF.
 c) Chứng minh rằng OA EF.
Câu 5: Tìm giá trị nhỏ nhất của biểu thức:
	P = 
ĐỀ SỐ 4
Câu 1: a) Trục căn thức ở mẫu của các biểu thức sau: ; .
	b) Trong hệ trục tọa độ Oxy, biết đồ thị hàm số y = ax2 đi qua điểm M (- 2; ). Tìm hệ số a.
Câu 2: Giải phương trình và hệ phương trình sau:
	a) 
	b) 
Câu 3: Cho phương trình ẩn x: x2 – 2mx + 4 = 0 (1)
 a) Giải phương trình đã cho khi m = 3.
 b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: ( x1 + 1 )2 + ( x2 + 1 )2 = 2.
Câu 4: Cho hình vuông ABCD có hai đường chéo cắt nhau tại E. Lấy I thuộc cạnh AB, M thuộc cạnh BC sao cho: (I và M không trùng với các đỉnh của hình vuông ).
Chứng minh rằng BIEM là tứ giác nội tiếp đường tròn.
Tính số đo của góc 
Gọi N là giao điểm của tia AM và tia DC; K là giao điểm của BN và tia EM. Chứng minh CK BN.
Câu 5: Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh: 
ab + bc + ca a2 + b2 + c2 < 2(ab + bc + ca ).
Có rất nhiều để thi hay và đáp án mời các thầy cô giữ phím ctlr và nháy chuột vào dòng link dưới đây:

Tài liệu đính kèm:

  • docBo_de_on_thi_lop_10_mon_toan_rat_hay_co_dap_an.doc