168 Bài toán chọn lọc lớp 5

pdf 75 trang Người đăng duthien27 Lượt xem 511Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "168 Bài toán chọn lọc lớp 5", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
168 Bài toán chọn lọc lớp 5
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
1 
1 
168 BÀI TOÁN CHỌN LỌC LỚP 5 
 Bài 1 : Số có 1995 chữ số 7 khi chia cho 15 thì phần thập phân của thương là bao 
nhiêu? 
 Giải : Gọi số có 1995 chữ số 7 là A. Ta có: 
0,2
3
A
5
A
3
A
15
A

 Một số chia hết cho 3 khi tổng các chữ số của số đó chia hết cho 3. Tổng các chữ 
số của A là 1995 x 7. Vì 1995 chia hết cho 3 nên 1995 x 7 chia hết cho 3. Do đó A = 
777...77777 chia hết cho 3. 
1995 chữ số 7 
 Một số hoặc chia hết cho 3 hoặc chia cho 3 cho số dư là 1 hoặc 2. 
 Chữ số tận cùng của A là 7 không chia hết cho 3, nhưng A chia hết cho 3 nên 
trong phép chia của A cho 3 thì số cuối cùng chia cho 3 phải là 27. Vậy chữ số tận 
cùng của thương trong phép chia A cho 3 là 9, mà 9 x 2 = 18, do đó số A/3 x 0,2 là số 
có phần thập phân là 8. 
 Vì vậy khi chia A = 777...77777 cho 15 sẽ được thương có phần thập phân là 8. 
 1995 chữ số 7 
 Nhận xét : Điều mấu chốt trong lời giải bài toán trên là việc biến đổi A/15 = A/3 
x 0,2 Sau đó là chứng minh A chia hết cho 3 và tìm chữ số tận cùng của thương trong 
phép chia A cho 3. Ta có thể mở rộng bài toán trên tới bài toán sau : 
 Bài 2 (1* ): Tìm phần thập phân của thương trong phép chia số A cho 15 
biết rằng số A gồm n chữ số a và A chia hết cho 3 ? 
 Nếu kí hiệu A = aaa...aaaa và giả thiết A chia hết cho 3 (tức là n x a chia hết cho 
3), thì khi 
 n chữ số a 
đó tương tự như cách giải bài toán 1 ta tìm được phần thập phân của thương khi chia A 
cho 15 như sau : 
 - Với a = 1 thì phần thập phân là 4 (A = 111...1111 , với n chia hết cho 3) 
 n chữ số 1 
 - Với a = 2 thì phần thập phân là 8 (A = 222...2222 , với n chia hết cho 3). 
 n chữ số 2 
 - Với a = 3 thì phần thập phân là 2 (A = 333...3333 , với n tùy ý). 
 n chữ số 3 
 - Với a = 4 thì phần thập phân là 6 (A = 444...4444 , với n chia hết cho 3) 
 n chữ số 4 
 - Với a = 5 thì phần thập phân là 0 (A = 555...5555 , với n chia hết cho 3). 
 n chữ số 5 
 - Với a = 6 thì phần thập phân là 4 (A = 666...6666 , với n tùy ý) 
 n chữ số 6 
 - Với a = 7 thì phần thập phân là 8 (A = 777...7777 , với n chia hết cho 3) 
 n chữ số 7 
 - Với a = 8 thì phần thập phân là 2 (A = 888...8888 , với n chia hết cho 3) 
 n chữ số 8 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
2 
2 
 - Với a = 9 thì phần thập phân là 6 (A = 999...9999 , với n tùy ý). 
 n chữ số 9 
 Trong các bài toán 1 và 2 (1*) ở trên thì số chia đều là 15. Bây giờ ta xét tiếp một 
ví dụ mà số chia không phải là 15. 
 Bài 3. Tìm phần thập phân của thương trong phép chia số 111...1111 cho 36 ? 
2007 chữ số 1 
 Giải. Đặt A = 111...1111 
 2007 chữ số 1 
 Ta có: 
25,0
94
1
936

AAA
 Vì 0,25 có hai chữ số ở phần thập phân nên ta sẽ tìm hai chữ số tận cùng của 
thương trong phép chia A cho 9. 
 Một số chia hết cho 9 khi tổng các chữ số của số đó chia hết cho 9. Tổng các chữ 
số của A là 2007 x 1 = 2007. Vì 2007 chia hết cho 9 nên A = 111....1111 chia hết cho 
9. 
 2007 chữ số 1 
 Một số hoặc chia hết cho 9 hoặc chia cho 9 cho số dư là một trong các số 1, 2, 3, 
4, 5, 6, 7, 8. Chữ số tận cùng của A là 1 không chia hết cho 9, nhưng A chia hết cho 9 
nên trong phép chia của A cho 9, thì ở bước cuối (ta gọi là bước k) : số chia cho 9 phải 
là 81. Vậy chữ số tận cùng của thương trong phép chia A cho 9 là 9. Cũng trong phép 
chia của A cho 9, ở trước bước cuối (bước k - 1) : số chia cho 9 cho số dư là 8 sẽ là 71 
và khi đó ở thương ta được số giáp số cuối cùng là 7. 
 Vậy hai chữ số tận cùng của thương trong phép chia A cho 9 là 79. 
 Do đó số 
0,25
9
A

 = ......79 X 0,25 = ......,75 là số có phần thập phân là 75. 
 Nhận xét: 
 a) Vì số 0,25 có phần thập phân là số có hai chữ số, nên nếu ta chỉ tìm một chữ số 
tận cùng của thương trong phép chia A cho 9 và sau đó nhân chữ số cuối này với 0,25 
thì kết quả sẽ không đúng. 
 b) Cũng có thể biến đổi 36 = 12 x 3 hoặc 36 = 6 x 6, ... tuy nhiên việc tính toán sẽ 
phức tạp và trong nhiều trường hợp là không thực hiện được. 
Vận dụng: Tìm phần thập phân trong thương của phép chia : 
a) Số 111....1111 cho 12 ? 
 2001 chữ số 1 
b) Số 888...8888 cho 45 ? 
 2007 chữ số 1 
c) Số 333...3333 cho 24 ? 
 1000000 chữ số 3 
Bài 4 : Cho mảnh bìa hình vuông ABCD. Hãy cắt từ mảnh bìa đó một hình 
vuông sao cho diện tích còn lại bằng diện tích của mảnh bìa đã cho. 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
3 
3 
Bài giải : 
Theo đầu bài thì hình vuông ABCD được ghép bởi 2 hình vuông nhỏ và 4 tam 
giác (trong đó có 2 tam giác to, 2 tam giác con). Ta thấy có thể ghép 4 tam giác con để 
được tam giác to đồng thời cũng ghép 4 tam giác con để được 1 hình vuông nhỏ. Vậy 
diện tích của hình vuông ABCD chính là diện tích của 2 + 2 x 4 + 2 x 4 = 18 (tam giác 
con). Do đó diện tích của hình vuông ABCD là : 
18 x (10 x 10) / 2 = 900 (cm
2
) 
Bài 5:Tuổi ông hơn tuổi cháu là 66 năm. Biết rằng tuổi ông bao nhiêu năm 
thì tuổi cháu bấy nhiêu tháng . hãy tính tuổi ông và tuổi cháu (tương tự bài Tính 
tuổi - cuộc thi Giải toán qua thư TTT số 1) 
Giải 
Giả sử cháu 1 tuổi (tức là 12 tháng) thì ông 12 tuổi. 
Lúc đó ông hơn cháu : 12 - 1 = 11 (tuổi) 
Nhưng thực ra ông hơn cháu 66 tuổi, tức là gấp 6 lần 11 tuổi (66:11=6). 
Do đó thực ra tuổi ông là : 12 x 6 = 72 (tuổi) 
Còn tuổi cháu là : 1 x 6 = 6 (tuổi) 
thử lại 6 tuổi = 72 tháng ; 72 - 6 = 66 (tuổi) 
Đáp số :Ông : 72 tuổi 
Cháu : 6 tuổi 
Bài 6: Một vị phụ huynh học sinh hỏi thầy giáo : "Thưa thầy, trong lớp có 
bao nhiêu học sinh ?" Thầy cười và trả lưòi :" Nếu có thêm một số trẻ em bằng số 
hiện có và thêm một nửa số đó, rồi lại thêm 1/4 số đó, rồi cả thêm con của quý vị 
(một lần nữa) thì sẽ vừa tròn 100". Hỏi lơp có bao nhiêu học sinh ? 
Giải: 
Theo đầu bài thì tổng của tất cả số HS và tất cả số HS và 1/2 số HS và 1/4 số HS 
của lớp sẽ bằng : 100 - 1 = 99 (em) 
Để tìm được số HS của lớp ta có thể tìm trước 1/4 số HS cả lớp. 
Giả sử 1/4 số HS của lớp là 1 em thì cả lớp có 4 HS 
Vậy : 1/4 số HS của lứop là : 4 : 2 = 2 (em). 
Suy ra tổng nói trên bằng : 4 + 4 + 2 + 1 = 11 9em) 
Nhưng thực tế thì tổng ấy phải bằng 99 em, gấp 9 lần 11 em (99 : 11 = 9) 
Suy ra số HS của lớp là : 4 x 9 = 36 (em) 
Thử lại: 36 + 36 = 36/2 + 36/4 + 1 = 100 
Đáp số: 36 học sinh. 
Bài 7:Tham gia hội khoẻ Phù Đổng huyện có tất cả 222 cầu thủ thi đấu hai 
môn: Bóng đá và bóng chuyền. Mỗi đội bóng đá có 11 người. Mỗi đội bóng 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
4 
4 
chuyền có 6 người. Biết rằng có cả thảy 27 đội bóng, hãy tính số đội bóng đá, số 
đội bóng chuyền. 
Giải 
Giả sử có 7 đội bóng đá, thế thì số đội bóng chuyền là: 
27 - 7 = 20 (đội bóng chuyền) 
Lúc đó tổng số cầu thủ là: 7 x 11 + 20 x 6 = 197 (người) 
Nhưng thực tế có tới 222 người nên ta phải tìm cách tăng thêm: 222 - 197 = 25 
(người), mà tổng số dội vẫn không đổi. 
Ta thấy nếu thay một dội bóng chuyền bằng một đội bóng đá thì tổng số đội vẫn 
không thay đổi nhưng tổng số người sẽ tăng thêm: 11 - 6 = 5 (người) 
Vậy muốn cho tổng số người tăng thêm 25 thì số dội bống chuyền phải thay 
bằng đọi bóng đá là: 
25 : 5 = 3 (đội) 
Do đó, số đội bóng chuyền là: 20 - 5 = 15 (đội) 
Còn số đội bống đá là: 7 + 5 = 12 (đội) 
Đáp số: 12 đội bóng đá, 15 đội bóng chuyền. 
Bài 8:Số gà nhiều hơn số thỏ là 28 con. số chân gà nhiều hơn số chân thỏ là 
40 chân. Hỏi có bao nhiêu con gà, bao nhiêu con thỏ? 
Giải 
Giả sử có 10 con thỏ, thế thì có : 10 + 28 = 38 (con) 
Số chân gà là : 38 x 2 = 76 (chân) 
Số chân thỏ là : 10 x 4 = 40 (chân) 
Hiệu số chân gà và thỏ là : 76 - 40 = 36 (chân) 
Vì thực tế thì số chân gà hơn số chân thỏ tới 40 chân nên ta phải tìm cách thêm 
vào hiệu trên : 40 - 36 = 4 (chân) 
Ta thấy nếu cùng bớt một con thỏ và một con gà thì hiệu số gà và thỏ vẫn không 
thay đổi song hiệu số chân gà và thỏ sẽ tăng thêm: 4 - 2 = 2 (chân) 
Để hiệu số chân tăng thêm 4 thì số thỏ và gà phải bớt đi là : 4 : 2 = 2 (con) 
Vậy số thỏ là: 10 - 2 = 8 (con thỏ) 
Số gà là : 38 - 2 = 36 (con gà) 
Đáp số là : 36 con gà và 8 con thỏ 
Bài 9: Một ô tô đi từ A đến B với vận tốc 30 km/giờ. Sau đó đi từ B về A với 
vận tốc 45 km/giờ. Tính quãng đường AB biết thời gian đi từ B về A ít hơn thời 
gian đi từ A đến B là 40 phút. 
Giải : 
Tỉ số giữa vận tốc đi và vận tốc về trên quãng đường AB là : 30 : 45 = 2/3. 
Vì quãng đường như nhau nên vận tốc và thời gian là hai đại lượng tỉ lệ nghịch 
với nhau. Do đó tỉ số thời gian đi và thời gian về là 3/2. 
Ta có sơ đồ : 
Thời gian đi từ A đến B là : 40 x 3 = 120 (phút) Đổi 120 phút = 2 giờ 
Quãng đường AB dài là : 30 x 2 = 60 (km) 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
5 
5 
Bài 10 : Tích sau đây có tận cùng bằng chữ số nào ? 
Bài giải 
Tích của bốn thừa số 2 là 2 x 2 x 2 x 2 = 16 và 2003 : 4 = 500 (dư 3) nên ta có 
thể viết tích của 2003 thừa số 2 dưới dạng tích của 500 nhóm (mỗi nhóm là tích của 
bốn thừa số 2) và tích của ba thừa số 2 còn lại. 
Vì tích của các thừa số có tận cùng là 6 cũng là số có tận cùng bằng 6 nên tích 
của 500 nhóm trên có tận cùng là 6. 
Do 2 x 2 x 2 = 8 nên khi nhân số có tận cùng bằng 6 với 8 thì ta được số có tận 
cùng bằng 8 (vì 6 x 8 = 48). Vậy tích của 2003 thừa số 2 sẽ là số có tận cùng bằng 8. 
Bài 11 : Một người mang cam đi đổi lấy táo và lê. Cứ 9 quả cam thì đổi 
được 2 quả táo và 1 quả lê, 5 quả táo thì đổi được 2 quả lê. Nếu người đó đổi hết 
số cam mang đi thì được 17 quả táo và 13 quả lê. Hỏi người đó mang đi bao nhiêu 
quả cam ? 
Bài giải 
9 quả cam đổi được 2 quả táo và 1 quả lê nên 18 quả cam đổi được 4 quả táo và 
2 quả lê. Vì 5 quả táo đổi được 2 quả lê nên 18 quả cam đổi được : 4 + 5 = 9 (quả táo). 
Do đó 2 quả cam đổi được 1 quả táo. Cứ 5 quả táo đổi được 2 quả lê nên 10 quả 
cam đổi được 2 quả lê. Vậy 5 quả cam đổi được 1 quả lê. Số cam người đó mang đi để 
đổi được 17 quả táo và 13 quả lê là : 2 x 17 + 5 x 13 = 99 (quả). 
Bài 12 : Tìm một số tự nhiên sao cho khi lấy 1/3 số đó chia cho 1/17 số đó 
thì có dư là 100. 
Bài giải 
Vì 17 x 3 = 51 nên để dễ lí luận, ta giả sử số tự nhiên cần tìm được chia ra thành 
51 phần bằng nhau. Khi ấy 1/3 số đó là 51 : 3 = 17 (phần) ; 1/17 số đó là 51 : 17 = 3 
(phần). 
Vì 17 : 3 = 5 (dư 2) nên 2 phần của số đó có giá trị là 100 suy ra số đó là : 
100 : 2 x 51 = 2550. 
Bài 13 : Tuổi của con hiện nay bằng 1/2 hiệu tuổi của bố và tuổi con. Bốn 
năm trước, tuổi con bằng 1/3 hiệu tuổi của bố và tuổi con. Hỏi khi tuổi con bằng 
1/4 hiệu tuổi của bố và tuổi của con thì tuổi của mỗi người là bao nhiêu? 
Bài giải 
Hiệu số tuổi của bố và con không đổi. Trước đây 4 năm tuổi con bằng 1/3 hiệu 
này, do đó 4 năm chính là : 1/2 - 1/3 = 1/6 (hiệu số tuổi của bố và con). 
Số tuổi bố hơn con là : 4 : 1/6 = 24 (tuổi). 
Khi tuổi con bằng 1/4 hiệu số tuổi của bố và con thì tuổi con là: 
24 x 1/4 = 6 (tuổi). 
Lúc đó tuổi bố là : 6 + 24 = 30 (tuổi). 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
6 
6 
Bài 14 : Hoa có một sợi dây dài 16 mét. Bây giờ Hoa cần cắt đoạn dây đó để 
có đoạn dây dài 10 mét mà trong tay Hoa chỉ có một cái kéo. Các bạn có biết Hoa 
cắt thế nào không ? 
Bài giải 
Cách 1 : Gập đôi sợi dây liên tiếp 3 lần, khi đó sợi dây sẽ được chia thành 8 
phần bằng nhau. 
Độ dài mỗi phần chia là : 16 : 8 = 2 (m) 
Cắt đi 3 phần bằng nhau thì còn lại 5 phần. 
Khi đó độ dài đoạn dây còn lại là : 2 x 5 = 10 (m) 
Cách 2 : Gập đôi sợi dây liên tiếp 2 lần, khi đó sợi dây sẽ được chia thành 4 
phần bằng nhau. 
Độ dài mỗi phần chia là : 16 : 4 = 4 (m) 
Đánh dấu một phần chia ở một đầu dây, phần đoạn dây còn lại được gập đôi lại, 
cắt đi một phần ở đầu bên kia thì độ dài đoạn dây cắt đi là : (16 - 4) : 2 = 6 (m) 
Do đó độ dài đoạn dây còn lại là : 16 - 6 = 10 (m) 
Bài 15 : Một thửa ruộng hình chữ nhật được chia thành 2 mảnh, một mảnh 
nhỏ trồng rau và mảnh còn lại trồng ngô (hình vẽ). Diện tích của mảnh trồng ngô 
gấp 6 lần diện tích của mảnh trồng rau. Chu vi mảnh trồng ngô gấp 4 lần chu vi 
mảnh trồng rau. Tính diện tích thửa ruộng ban đầu, biết chiều rộng của nó là 5 
mét. 
Bài giải 
Diện tích mảnh trồng ngô gấp 6 lần diện tích mảnh trồng rau mà hai mảnh có 
chung một cạnh nên cạnh còn lại của mảnh trồng ngô gấp 6 lần cạnh còn lại của mảnh 
trồng rau. Gọi cạnh còn lại của mảnh trồng rau là a thì cạnh còn lại của mảnh trồng 
ngô là a x 6. Vì chu vi mảnh trồng ngô (P1) gấp 4 lần chu vi mảnh trồng rau (P2) nên 
nửa chu vi mảnh trồng ngô gấp 4 lần nửa chu vi mảnh trồng rau. 
Nửa chu vi mảnh trồng ngô hơn nửa chu vi mảnh trồng rau là : 
a x 6 + 5 - (a + 5) = 5 x a. 
Ta có sơ đồ : 
Độ dài cạnh còn lại của mảnh trồng rau là : 5 x 3 : (5 x a - 3 x a) = 7,5 (m) 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
7 
7 
Độ dài cạnh còn lại của mảnh trồng ngô là : 7,5 x 6 = 45 (m) 
Diện tích thửa ruộng ban đầu là : (7,5 + 4,5) x 5 = 262,5 (m2) 
Bài 16 : Tôi đi bộ từ trường về nhà với vận tốc 5 km/giờ. Về đến nhà lập 
tức tôi đạp xe đến bưu điện với vận tốc 15 km/giờ. Biết rằng quãng đường từ nhà 
tới trường ngắn hơn quãng đường từ nhà đến bưu điện 3 km. Tổng thời gian tôi 
đi từ trường về nhà và từ nhà đến bưu điện là 1 giờ 32 phút. Bạn hãy tính quãng 
đường từ nhà tôi đến trường. 
Bài giải 
Thời gian để đi 3 km bằng xe đạp là : 3 : 15 = 0,2 (giờ) 
Đổi : 0,2 giờ = 12 phút. 
Nếu bớt 3 km quãng đường từ nhà đến bưu điện thì thời gian đi cả hai quãng 
đường từ nhà đến trường và từ nhà đến bưu điện (đã bớt 3 km) là : 
1 giờ 32 phút - 12 phút = 1 giờ 20 phút = 80 phút. 
Vận tốc đi xe đạp gấp vận tốc đi bộ là : 15 : 5 = 3 (lần) 
Khi quãng đường không đổi, vận tốc tỉ lệ nghịch với thời gian nên thời gian đi 
từ nhà đến trường gấp 3 lần thời gian đi từ nhà đến thư viện (khi đã bớt đi 3 km). Vậy : 
Thời gian đi từ nhà đến trường là : 80 : (1 + 3) x 3 = 60 (phút); 60 phút = 1 giờ 
Quãng đường từ nhà đến trường là : 1 x 5 = 5 (km) 
Bài 17 : Cho phân số : 
a) Có thể xóa đi trong tử số và mẫu số những số nào mà giá trị của phân số 
vẫn không thay đổi không ? 
b) Nếu ta thêm số 2004 vào mẫu số thì phải thêm số tự nhiên nào vào tử số 
để phân số không đổi ? 
Bài giải 
= 45 / 270 = 1/6. 
a) Để giá trị của phân số không đổi thì ta phải xóa những số ở mẫu mà tổng của 
nó gấp 6 lần tổng của những số xóa đi ở tử. Khi đó tổng các số còn lại ở mẫu cũng gấp 
6 lần tổng các số còn lại ở tử. Vì vậy đổi vai trò các số bị xóa với các số còn lại ở tử và 
mẫu thì ta sẽ có thêm phương án xóa. 
Có nhiều cách xóa, ví dụ: 
Số các số bị xóa ở mẫu tăng dần và tổng chia hết cho 6: mẫu xóa 12 thì tử xóa 2 
; mẫu xóa 18 thì tử xóa 3 hoặc xóa 1, 2 ; mẫu xóa 24 hoặc xóa 11, 13 thì tử xóa 4 hoặc 
xóa 1, 3 ; mẫu xóa 12, 18 hoặc 13, 17 hoặc 14, 16 thì tử xóa 5 hoặc 2, 3 hoặc 1, 4 ; 
mẫu xóa 12, 24 hoặc 11, 25 hoặc 13, 23 hoặc 14, 22 hoặc 15, 21 hoặc 16, 20 hoặc 17, 
19 thì tử xóa 6 hoặc 1, 5 hoặc 2, 4 hoặc 1, 2, 3 ; mẫu xóa 18, 24 hoặc 17, 25 hoặc 19, 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
8 
8 
23 hoặc 20, 22 hoặc 11, 13, 18 hoặc 12, 13, 17 hoặc 11, 14, 17 hoặc 11, 15, 16 hoặc 
12, 14, 16 hoặc 13, 14, 15 thì tử xóa 7 hoặc 1, 6 hoặc 2, 5 hoặc 3, 4 hoặc 1, 2, 4 ; ... 
b) Để giá trị phân số không đổi, ta thêm một số nào đó vào tử bằng 1/6 số thêm 
vào mẫu. Vậy nếu thêm 2004 vào mẫu thì số phải thêm vào tử là : 
2004 : 6 = 334. 
Bài 18 : Người ta lấy tích các số tự nhiên liên tiếp từ 1 đến 30 để chia cho 
1000000. Bạn hãy cho biết : 
1) Phép chia có dư không ? 
2) Thương là một số tự nhiên có chữ số tận cùng là bao nhiêu ? 
Bài giải : 
Xét tích A = 1 x 2 x 3 x ... x 29 x 30, trong đó các thừa số chia hết cho 5 là 5, 
10, 15, 20, 25, 30 ; mà 25 = 5 x 5 do đó có thể coi là có 7 thừa số chia hết cho 5. Mỗi 
thừa số này nhân với một số chẵn cho ta một số có tận cùng là số 0. Trong tích A có 
các thừa số là số chẵn và không chia hết cho 5 là : 2, 4, 6, 8, 12, . . . , 26, 28 (có 12 số). 
Như vật trong tích A có ít nhất 7 cặp số có tích tận cùng là 0, do đó tích A có tận cùng 
là 7 chữ số 0. 
Số 1 000 000 có tận cùng là 6 chữ số 0 nên A chia hết cho 1 000 000 và thương 
là số tự nhiên có tận cùng là chữ số 0. 
Bài 19 : Ba bạn Toán, Tuổi và Thơ có một số vở. Nếu lấy 40% số vở của 
Toán chia đều cho Tuổi và Thơ thì số vở của ba bạn bằng nhau. Nhưng nếu Toán 
bớt đi 5 quyển thì số vở của Toán bằng tổng số vở của Tuổi và Thơ. Hỏi mỗi bạn 
có bao nhiêu quyển vở ? 
Bài giải 
Đổi 40% = 2/5. 
Nếu lấy 2/5 số vở của Toán chia đều cho Tuổi và Thơ thì mỗi bạn Tuổi hay Thơ 
đều được thêm 2/5 : 2 = 1/5 (số vở của Toán) 
Số vở còn lại của Toán sau khi cho là : 
1 - 2/5 = 3/5 (số vở của Toán) 
Do đó lúc đầu Tuổi hay Thơ có số vở là : 
3/5 - 1/5 = 2/5 (số vở của Toán) 
Tổng số vở của Tuổi và Thơ lúc đầu là : 
2/5 x 2 = 4/5 (số vở của Toán) 
Mặt khác theo đề bài nếu Toán bớt đi 5 quyển thì số vở của Toán bằng tổng số 
vở của Tuổi và Thơ, do đó 5 quyển ứng với : 1 - 4/5 = 1/5 (số vở của Toán) 
Số vở của Toán là : 5 : 1/5 = 25 (quyển) 
Số vở của Tuổi hay Thơ là : 25 x 2/5 = 10 (quyển) 
Bài 20 : Hai số tự nhiên A và B, biết A < B và hai số có chung những đặc 
điểm sau: 
- Là số có 2 chữ số. 
- Hai chữ số trong mỗi số giống nhau. 
- Không chia hết cho 2 ; 3 và 5. 
a) Tìm 2 số đó. 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
9 
9 
b) Tổng của 2 số đó chia hết cho số tự nhiên nào ? 
Bài giải 
a) Vì A và B đều không chia hết cho 2 và 5 nên A và B chỉ có thể có tận cùng là 
1 ; 3 ; 7 ; 9. Vì 3 + 3 = 6 và 9 + 9 = 18 là 2 số chia hết cho 3 nên loại trừ số 33 và 99. 
A < B nên A = 11 và B = 77. 
b) Tổng của hai số đó là : 11 + 77 = 88. 
Ta có : 
88 = 1 x 88 = 2 x 44 = 4 x 22 = 8 x 11. 
Vậy tổng 2 số chia hết cho các số : 1 ; 2 ; 4 ; 8 ; 11 ; 22 ; 44 ; 88. 
Bài 21 : Cho mảnh bìa hình vuông ABCD. Hãy cắt từ mảnh bìa đó một 
hình vuông sao cho diện tích còn lại bằng diện tích của mảnh bìa đã cho. 
Bài giải 
Theo đầu bài thì hình vuông ABCD được ghép bởi 2 hình vuông nhỏ và 4 tam 
giác (trong đó có 2 tam giác to, 2 tam giác con). Ta thấy có thể ghép 4 tam giác con để 
được tam giác to đồng thời cũng ghép 4 tam giác con để được 1 hình vuông nhỏ. Vậy 
diện tích của hình vuông ABCD chính là diện tích của 2 + 2 x 4 + 2 x 4 = 18 (tam giác 
con). Do đó diện tích của hình vuông ABCD là : 
18 x (10 x 10) / 2 = 900 (cm
2
) 
Bài 22 : Hai bạn Xuân và Hạ cùng một lúc rời nhà của mình đi đến nhà 
bạn. Họ gặp nhau tại một điểm cách nhà Xuân 50 m. Biết rằng Xuân đi từ nhà 
mình đến nhà Hạ mất 12 phút còn Hạ đi đến nhà Xuân chỉ mất 10 phút. Hãy tính 
quãng đường giữa nhà hai bạn. 
Bài giải 
Trên cùng một quãng đường thì tỉ số thời gian đi của Xuân và Hạ là : 12 : 10 = 
6/5. 
Thời gian tỉ lệ nghịch với vận tốc nên tỉ số vận tốc của Xuân và Hạ là 5/6. Như 
vậy Xuân và Hạ cùng xuất phát thì đến khi gặp nhau thì quãng đường Xuân đi được 
bằng 5/6 quãng đường Hạ đi được. 
Do đó quãng đường Hạ đi được là : 
50 : 5/6 = 60 (m). 
Quãng đường giữa nhà Xuân và Hạ là : 50 + 60 = 110 (m). 
Bài 23 : A là số tự nhiên có 2004 chữ số. A là số chia hết cho 9 ; B là tổng 
các chữ số của A ; C là tổng các chữ số của B ; D là tổng các chữ số của C. Tìm D. 
Bài giải 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
10 
10 
Vì A là số chia hết cho 9 mà B là tổng các chữ số của A nên B chia hết cho 9. 
Tương tự ta có C, D cũng chia hết cho 9 và đương nhiên khác 0. Vì A gồm 2004 chữ 
số mà mỗi chữ số không vượt quá 9 nên B không vượt quá 9x 2004 = 18036. 
Do đó B có không quá 5 chữ số và C < 9 x 5 = 45. Nhưng C là số chia hết cho 9 
và khác 0 nên C chỉ có thể là 9 ; 18 ; 27 ; 36. Dù trường hợp nào xảy ra thì ta cũng có 
D = 9. 
Bài 24 : Một khu vườn hình chữ nhật có chu vi 120 m. Người ta mở rộng 
khu vườn như hình vẽ để được một vườn hình chữ nhật lớn hơn. Tính diện tích 
phần mới mở thêm. 
Bài giải 
Nếu ta “dịch chuyển” khu vườn cũ ABCD vào một góc của khu vườn mới 
EFHD ta được hình vẽ bên. Kéo dài EF về phía F lấy M sao cho FM = BC thì diện tích 
hình chữ nhật BKHC đúng bằng diện tích hình chữ nhật FMNK. Do đó phần diện tích 
mới mở thêm chính là diện tích hình chữ nhật EMNA. 
Ta có AN = AB + KN + BK vì AB + KN = 120 : 2 = 60 (m) ; BK = 10 m 
nên AN = 70 m. Vậy diện tích phần mới mở thêm là : 70 x 10 = 700 (m2) 
Bài 25 : Bao nhiêu giờ ? 
Khi đi gặp nước ngước dòng 
Khó khăn đến bến mất tong tám giờ 
Khi về từ lúc xuống đò 
Đến khi cập bến bốn giờ nhẹ veo 
Hỏi rằng riêng một khóm bèo 
Bao nhiêu giờ để trôi theo ta về ? 
Bài giải : 
Cách 1 : Vì đò đi ngược dòng đến bến mất 8 giờ nên trong 1 giờ đò đi được 1/8 
quãng sông đó. Đò đi xuôi dòng trở về mất 4 giờ nên trong 1 giờ đò đi được 1/4 quãng 
sông đó. Vận tốc đò xuôi dòng hơn vận tốc đò ngược dòng là : 1/4 - 1/8 = 1/8 (quãng 
sông đó). 
Vì hiệu vận tốc đò xuôi dòng và vận tốc đò ngược dòng chính là 2 lần vận tốc 
dòng nước nên một giờ khóm bèo trôi được là : 1/8 : 2 = 1/16 (quãng sông đó). 
Thời gian để khóm bèo trôi theo đò về là : 1 : 1/16 = 16 (giờ). 
Cách 2 : Tỉ số giữa thời gian đò xuôi dòng và thời gian đò ngược dòng là :4 : 8 
= 1/2 Trên cùng một quãng đường thì vận tốc và thời gian của một chuyển động tỉ lệ 
nghịch với nhau nên tỉ số vận tốc đò xuôi dòng và vận tốc đò ngược dòng là 2. Vận tốc 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
11 
11 
đò xuôi dòng hơn vận tốc đò ngược dòng chính là 2 lần vận tốc dòng nước. Ta có sơ 
đồ: 
Theo sơ đồ ta có vận tốc ngược dòng gấp 2 lần vận tốc dòng nước nên thời gian 
để cụm bèo trôi theo đò về gấp 2 lần thời gian ngược dòng. Vậy thời gian cụm bèo trôi 
theo đò về là : 8 x 2 = 16 (giờ). 
Bài 26 : Một hình chữ nhật có chiều dài gấp 4 lần chiều rộng. Nếu tăng 
chiều rộng thêm 45 m thì được hình chữ nhật mới có chiều dài vẫn gấp 4 lần 
chiều rộng. Tính diện tích hình chữ nhật ban đầu. 
Bài giải 
Khi tăng chiều rộng thêm 45 m thì khi đó chiều rộng sẽ trở thành chiều dài của 
hình chữ nhật mới, còn chiều dài ban đầu sẽ trở thành chiều rộng của hình chữ nhật 
mới. Theo đề bài ta có sơ đồ : 
Do đó 45 m ứng với số phần là : 16 - 1 = 15 (phần) 
Chiều rộng ban đầu là : 45 : 15 = 3 (m) 
Chiều dài ban đầu là : 3 x 4 = 12 (m) 
Diện tích hình chữ nhật ban đầu là : 3 x 12 = 36 (m2) 
Bài 27: Bạn An đã có một số bài kiểm tra, bạn đó tính rằng : Nếu được 
thêm ba điểm 10 và ba điểm 9 nữa thì điểm trung bình của tất cả các bài sẽ là 8. 
Nếu được thêm một điểm 9 và hai điểm 10 nữa thì điểm trung bình của tất cả các 
bài là 7,5. Hỏi bạn An đã có tất cả mấy bài kiểm tra ? 
Bài giải 
Nếu được thêm ba điểm 10 và ba điểm 9 nữa thì số điểm được thêm là : 
10 x 3 + 9 x 3 = 57 (điểm) 
Để được điểm trung bình của tất cả các bài là 8 thì số điểm phải bù thêm vào 
cho các bài đã kiểm tra là : 57 - 8 x (3 + 3) = 9 (điểm) 
Nếu được thêm một điểm 9 và hai điểm 10 nữa thì số điểm được thêm là : 
9 x 1 + 10 x 2 = 28 (điểm) 
Để được điểm trung bình của tất cả các bài là 7,5 thì số điểm phải bù thêm vào 
cho các bài đã kiểm tra là : 29 - 7,5 x (1 + 2) = 6,5 (điểm) 
Như vậy khi tăng điểm trung bình của tất cả các bài từ 7,5 lên 8 thì tổng số điểm 
của các bài đã kiểm tra sẽ tăng lên là : 9 - 6,5 = 2,5 (điểm) 
Hiệu hai điểm trung bình là : 8 - 7,5 = 0,5 (điểm) 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
12 
12 
Vậy số bài đã kiểm tra của bạn An là : 2,5 : 0,5 = 5 (bài) 
Bài 28 : Bạn hãy cắt một hình vuông có diện tích bằng 5 / 8 diện tích của 
một tấm bìa hình vuông cho trước. 
Bài giải : 
Chia cạnh tấm bìa hình vuông cho trước làm 4 phần bằng nhau (bằng cách gấp 
đôi liên tiếp). Sau đó cắt theo các đường AB, BC, CD, DA. Các miếng bìa AMB, 
BNC, CPD, DQA xếp trùng khít lên nhau nên AB = BC = CD = DA (có thể kiểm tra 
bằng thước đo). Dùng êke kiểm tra các góc của tấm bìa ABCD ta thấy các góc là 
vuông. 
Nếu kẻ bằng bút chì các đường chia tấm bìa ban đầu thành những ô vuông như 
hình vẽ thì ta có thể thấy : 
+ Diện tích tấm bìa MNPQ là 16 ô vuông (ghép 2 hình tam giác với nhau thì 
được hình chữ nhật gồm 3 hình vuông). 
Do đó diện tích hình vuông ABCD là 16 – 6 = 10 (ô vuông) nên diện tích ô 
vuông ABCD bằng 10 / 16 = 5 / 8 diện tích tấm bìa ban đầu. 
Bài 29 : Một mảnh đất hình chữ nhật được chia thành 4 hình chữ nhật nhỏ 
hơn có diện tích được ghi như hình vẽ. Bạn có biết diện tích hình chữ nhật còn lại 
có diện tích là bao nhiêu hay không ? 
Bài giải 
Hai hình chữ nhật AMOP và MBQO có chiều rộng bằng nhau và có diện tích 
hình MBQO gấp 3 lần diện tích hình AMOP (24 : 8 = 3 (lần)), do đó chiều dài hình 
chữ nhật MBQO gấp 3 lần chiều dài hình chữ nhật AMOP (OQ = PO x 3). (1) 
Hai hình chữ nhật POND và OQCN có chiều rộng bằng nhau và có chiều dài 
hình OQCN gấp 3 lần chiều dài hình POND (1). Do đó diện tích hình OQCN gấp 3 lần 
diện tích hình POND. 
Vậy diện tích hình chữ nhật OQCD là : 16 x 3 = 48 (cm2). 
Bài 30 : Cho A = 2004 x 2004 x ... x 2004 (A gồm 2003 thừa số) và 
B = 2003 x 2003 x ... x 2003 (B gồm 2004 thừa số). 
Hãy cho biết A + B có chia hết cho 5 hay không ? Vì sao ? 
Bài giải : 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
13 
13 
A = (2004 x 2004 x ... x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004). C 
có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24). 
B = 2003 x 2003 x ... x 2003 (gồm 2004 thừa số) = (2003 x 2003 x 2003 x 
2003) x ... x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501 (nhòm) nên B có 501 
nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 
3 = 27 ; 27 x 3 = 81). 
Vậy tận cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5. 
Bài 31 : Biết rằng số A chỉ viết bởi các chữ số 9. Hãy tìm số tự nhiên nhỏ 
nhất mà cộng số này với A ta được số chia hết cho 45. 
Bài giải : 
Cách 1 : A chỉ viết bởi các chữ số 9 nên: 
Vậy A chia cho 45 dư 9. Một số nhỏ nhất mà cộng với A để được số chia hết 
cho 45 thì số đó cộng với 9 phải bằng 45. 
Vậy số đó là : 45 - 9 = 36. 
Cách 2 : Gọi số tự nhiên nhỏ nhất cộng vào A là m. Ta có A + m là số chia hết 
cho 45 hay chia hết cho 5 và 9 (vì 5 x 9 = 45 ; 5 và 9 không cùng chia hết cho một số 
số nào đó khác 1). Vì A viết bởi các chữ số 9 nên A chia hết cho 9, do đó m chia hết 
cho 9. A + m chia hết cho 5 khi A + m có tận cùng là 0 hoặc 5 mà A có tận cùng là 9 
nên m có tận cùng là 1 hoặc 6. Số nhỏ nhất có tận cùng là 1 hoặc 6 mà chia hết cho 9 
là 36. 
Vậy m = 36. 
Bài 32 : Cho một hình thang vuông có đáy lớn bằng 3 m, đáy nhỏ và chiều 
cao bằng 2 m. Hãy chia hình thang đó thành 5 hình tam giác có diện tích bằng 
nhau. Hãy tìm các kiểu chia khác nhau sao cho số đo chiều cao cũng như số đo 
đáy của tam giác đều là những số tự nhiên. 
Bài giải : 
Diện tích hình thang là : (3 + 2) x 2 : 2 = 5 (m2) 
Chia hình thang đó thành 5 tam giác có diện tích bằng nhau thì diện tích một 
tam giác là : 5 : 5 = 1 (m
2). Các tam giác này có chiều cao và số đo đáy là số tự nhiên 
nên nếu chiều cao là 1m thì đáy là 2 m. Nếu chiều cao là 2 m thì đáy là 1 m. Có nhiều 
cách chia, via dụ : 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
14 
14 
Bài 33 : Bạn hãy tính chu vi của hình có từ một hình vuông bị cắt mất đi 
một phần bởi một đường gấp khúc gồm các đoạn song song với cạnh hình vuông. 
Bài giải : 
Ta kí hiệu các điểm như hình vẽ sau : 
Nhìn hình vẽ ta thấy : CE + GH + KL + MD = CE + EI = CI. 
EG + HK + LM + DA = ID + DA = IA. 
Từ đó chu vi của hình tô màu chính là : 
AB + BC + CE + EG + GH + HK + KL + LM + MD + DA = AB + BC + (CE + GH + 
KL + MD) + (EG + HK + LM + DA) = AB + BC + CI + IA = AB x 4. 
Vậy chu vi của hình tô màu là : 10 x 4 = 40 (cm). 
Bài 34 : Cho băng giấy gồm 13 ô với số ở ô thứ hai là 112 và số ở ô thứ bảy 
là 215. 
Biết rằng tổng của ba số ở ba ô liên tiếp luôn bằng 428. Tính tổng của các 
chữ số trên băng giấy đó. 
Bài giải : 
Ta chia các ô thành các nhóm 3 ô, mỗi nhóm đánh số thứ tự như sau : 
168 BÀI TOÁN CHỌN LỌC LỚP 5 và lời giải 
 Đăng ký học tập bồi dưỡng Toán lớp 5 ôn luyện thi Toán Violympic | Cô Trang – 0948.228.325 
15 
15 
Tổng các số của mỗi nhóm 3 ô liên tiếp là 428. Như vậy ta thấy các số viết ở ô 
số 1 là 215, ở ô số 2 là 112, ở ô số 3 là : 428 - (215 + 112) = 101. 
Ta có băng giấy ghi số như sau : 
Tổng các chữ số của mỗi nhóm 3 ô là : 2 + 1 + 5 + 1 + 1 + 2 + 1 + 0 + 1 = 14. 
Có tất cả 4 nhóm 3 ô và một số ở ô số 1 nên tổng các chữ số trên băng giấy là : 
14 x 4 + 2 + 1 + 5 = 64. 
Bài 35 : Tuổi của em tôi hiện nay bằng 4 lần tuổi của nó khi tuổi của anh tôi 
bằng tuổi của em tôi hiện nay. Đến khi tuổi của em tôi bằng tuổi của anh tôi hiện 
nay thì tổng số tuổi của hai anh em là 51. Hỏi hiện nay anh tôi, em tôi bao nhiêu 
tuổi ? 
Bài giải : 
Hiệu số tuổi của hai anh em là một số không đổi. 
Ta có sơ đồ biểu diễn số tuổi của hai anh em ở các thời điểm : Trước đây (TĐ), 
hiện nay (HN), sau này (SN) : 
Giá trị một phần là : 51 : (7 + 10) = 3 (tuổi) 
Tuổi em hiện nay là : 3 x 4 = 12 (tuổi) 
Tuổi anh hiện nay là : 3 x 

Tài liệu đính kèm:

  • pdf168_bai_toan_chon_loc_lop_5.pdf